Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In this study, an innovative, rapid, and automated method for quantifying six Gelsemium elegans alkaloids in biological samples using magnetic dispersive solid-phase extraction (MDSPE) and liquid chromatography tandem mass spectrometry (LC-MS/MS). Magnetic HLB extractant, NaHPO/NaHPO buffer (0.2 M, pH 7) and acetonitrile were used in automatic MDSPE. The average pretreatment time was less than 2 min per sample. Atropine-d3 was employed as the internal standard (IS). The six alkaloids demonstrated a linear response (R > 0.997) in the concentration range of 1∼100 ng/mL and 2∼200 ng/g. Precision and accuracy were within ± 15%, and the extraction recovery rates for each alkaloid ranged from 60.32% to 105.32%. The samples were found to be stable under various conditions. In summary, we present the first automated MDSPE-LC-MS/MS method for simultaneous quantification of six Gelsemium elegans alkaloids (gelsemine, koumine, humantenmine, humantenine, humantenidine, and humantenirine) in multiple biological matrices (whole blood, urine, liver). Unlike prior studies focused on one to two analytes or single matrices, this method achieves unparalleled specificity for six alkaloids with detection limits up to 0.01 ng/mL (0.02 ng/g), addressing critical gaps in forensic toxicology for complex poisoning cases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jssc.70153 | DOI Listing |