98%
921
2 minutes
20
Hispanic/Latino populations are admixed, with genetic contributions from multiple ancestral populations. To uncover genetic associations in these populations, researchers often turn to admixture mapping, which relies on inferred counts of "local" ancestry, i.e. the source ancestral population at a locus. Local ancestries are inferred using external reference panels that represent ancestral populations, making the choice of inference method and reference panel critical. This study used a dataset of Hispanic/Latino individuals from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) to evaluate how updates in local ancestry inference (LAI) affect results, specifically, the 'old' LAI performed using a popular inference method RFMix alongside 'new' inferences performed using Fast Local Ancestry Estimation (FLARE) with an updated reference panel. We compared their performance in terms of global and local ancestry correlations, as well as admixture mapping-based associations. Overall, the old and new inferences produced highly similar global and local ancestry estimates, with FLARE-based results closely matching those from RFMix in admixture mapping analyses. However, in some genomic regions, the old and new local ancestries showed relatively lower correlations (Pearson R < 0.9). Most of these regions (86.42%) were mapped to either ENCODE blacklist regions or gene clusters, compared to 7.67% of randomly-matched regions with high correlations (Pearson R > 0.97). These findings show that old and new inferences largely agree and suggest that regions of lower agreement are mostly due to genomic sequence contexts that lead to less stable inference, rather than due to the LAI software or genotyping technology used.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12361116 | PMC |
http://dx.doi.org/10.1093/hmg/ddaf093 | DOI Listing |
Syst Biol
September 2025
Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027, USA.
Genomes are composed of a mosaic of segments inherited from different ancestors, each separated by past recombination events. Consequently, genealogical relationships among multiple genomes vary spatially across different genomic regions. Genealogical variation among unlinked (uncorrelated) genomic regions is well described for either a single population (coalescent) or multiple structured populations (multispecies coalescent).
View Article and Find Full Text PDFNAR Genom Bioinform
September 2025
Centre for Integrative Biology and Systems Medicine (IBSE), Wadhwani School of Data Science and AI, Indian Institute of Technology (IIT) Madras, Chennai 600036, India.
Genome graphs provide a powerful reference structure for representing genetic diversity. Their structure emphasizes the polymorphic regions in a collection of genomes, enabling network-based comparisons of population-level variation. However, current tools are limited in their ability to quantify and compare structural features across large genome graphs.
View Article and Find Full Text PDFGenetics
September 2025
Institute of Ecology and Evolution, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3FL, United Kingdom.
Recent advances in methods to infer and analyse ancestral recombination graphs (ARGs) are providing powerful new insights in evolutionary biology and beyond. Existing inference approaches tend to be designed for use with fully-phased datasets, and some rely on model assumptions about demography and recombination rate. Here I describe a simple model-free approach for genealogical inference along the genome from unphased genotype data called Sequential Tree Inference by Collecting Compatible Sites (sticcs).
View Article and Find Full Text PDFPsychoneuroendocrinology
August 2025
Laboratory of Physiological Genomics of Mental Health (PhysioGen Lab), Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil. Electronic address:
Altered cortisol regulation is implicated in Attention-Deficit/Hyperactivity Disorder (ADHD), but causality remains debated. While meta-analyses suggest that lower basal cortisol levels, especially in the morning, correlate with ADHD, study heterogeneity prompts further inquiry. Leveraging post-genome-wide association approaches, we examined morning cortisol levels (n = 25,314) and ADHD (n = 225,543).
View Article and Find Full Text PDFEvolutionary biology has long recognized the tendency for populations to be locally adapted to their ancestral habitat, resulting in higher resident fitness. However, immigrants can also introduce beneficial alleles. The resulting adaptive introgression is usually inferred retrospectively, rather than as a contemporary process.
View Article and Find Full Text PDF