98%
921
2 minutes
20
Passive implanted devices are commonly contraindicated at ultra-high field MRI due to the risk of radiofrequency heating. Mitigation of this risk has come in many forms, such as modifying implant materials or creating novel radiofrequency coils. These methods require substantial involvement from manufacturers and may not benefit patients with existing implants. In this study, a tailored metasurface design is demonstrated to improve implant safety at 7 T by shielding the local B field. A prototype metasurface was designed and implemented with a unit cell size of 15 mm using discrete capacitors of 30 pF values. Phantom and human body model simulations were used to validate differences in the SAR distribution with and without the metasurface. Fiber optic temperature probes were used to measure temperature increase across two representative orthopedic screws placed inside a tissue mimicking phantom during a high-SAR sequence. Phantom and in-vivo imaging were performed to assess the metasurface effect on image quality. With the metasurface, an average maximum temperature decrease of 0.50 °C or 34.9 % near the implant was observed. RF field simulations yielded similar decreases in SAR for the phantom (40.7 %) and substantial decreases for the in-vivo leg model (97 %). Phantom image SNR showed a global 8.5 % decrease with the metasurface while in-vivo images showed a 4.8 % decrease in SNR, with the region in its immediate vicinity experiencing substantial signal drop. These results demonstrate the feasibility of a metasurface designed to substantially reduce local RF induced heating with only minor degradation of image quality. Future work will focus on refinement of the metasurface design and further in-vivo testing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmr.2025.107918 | DOI Listing |
Nano Lett
September 2025
Key Laboratory of Micro & Nano Photonic Structures, Department of Optical Science and Engineering, College of Future Information Technology, Fudan University, Shanghai 200433, China.
The separation and propagation of spin are vital to understanding spin-orbit coupling (SOC) in quantum systems. Exciton-polaritons, hybrid light-matter quasiparticles, offer a promising platform for investigating SOC in quantum fluids. By utilization of the optical anisotropy of materials, Rashba-Dresselhaus SOC (RDSOC) can be generated, enabling robust polariton spin transport.
View Article and Find Full Text PDFNat Photonics
June 2025
Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Metasurfaces provide an ideal platform for optical sensing because they produce strong light-field confinement and enhancement over extended regions that allow us to identify deep-subwavelength layers of organic and inorganic molecules. However, the requirement of using external light sources involves bulky equipment that hinders point-of-care applications. Here we introduce a plasmonic sensor with an embedded source of light provided by quantum tunnel junctions.
View Article and Find Full Text PDFNpj Nanophoton
September 2025
Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich, Germany.
Second-order nonlinear optical processes are fundamental to photonics, spectroscopy, and information technologies, with material platforms playing a pivotal role in advancing these applications. Here, we demonstrate the exceptional nonlinear optical properties of the van der Waals crystal 3R-MoS, a rhombohedral polymorph exhibiting high second-order optical susceptibility ( ) and remarkable second-harmonic generation (SHG) capabilities. By designing high quality factor resonances in 3R-MoS metasurfaces supporting quasi-bound states in the continuum (qBIC), we first demonstrate SHG efficiency enhancement exceeding 10.
View Article and Find Full Text PDFNano Lett
September 2025
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
Active manipulation of terahertz (THz) waves is important for future optoelectronic applications, but most approaches rely on volatile or slow actuation, limiting efficiency and stability. Here, we report a nonvolatile, low-voltage tunable THz transmission device based on electrochemical modulation of a conductive polymer thin film integrated with metallic nanoresonators. A thin film of PEDOT:PSS, deposited via a single-step spin-coating process onto the nanoresonator array, enables efficient modulation of resonance-enhanced THz transmission with a gate voltage of less than 1 V.
View Article and Find Full Text PDFACS Nano
September 2025
Department of Physics of Information in Matter and Center for Nanophotonics, NWO-I Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands.
Fano lineshapes associated with quasi bound-state-in-the-continuum resonances, that are supported by dielectric metasurfaces, have the advantageous properties of being extremely sensitive to minute geometrical changes in the meta-atoms. We show an approach to determine deep subwavelength feature sizes, comparable to semiconductor critical dimension metrology, by structurally infilling a void of a dielectric disk-hole metasurface design. Our simulated results show a sensitivity of 40.
View Article and Find Full Text PDF