98%
921
2 minutes
20
Individual Trip Destination Prediction aims to accurately forecast an individual's future travel destinations by analyzing their historical trajectory data, holding significant application value in intelligent navigation, personalized recommendations, and urban traffic management. However, challenges such as data sparsity, low quality, and complex spatiotemporal volatility pose substantial difficulties for prediction tasks. Existing studies exhibit notable limitations in insufficient integration of sparsity handling and prediction tasks, constrained modeling capability for local volatility, and inadequate exploration of fine-grained spatial dependencies, struggling to balance global patterns and local features in trajectory data. To address these issues, this paper proposes an individual trip destination prediction method that integrates multi-task learning, a multi-trajectory subsequence alignment attention mechanism, and a spatially consistent constrained cross-entropy loss function. Leveraging a multi-task learning framework(MTSA-SC), our approach collaboratively addresses trajectory recovery and prediction tasks, enhancing prediction accuracy while improving robustness to missing data. The multi-trajectory subsequence alignment attention mechanism incorporates sliding windows and convolutional operations to dynamically capture local volatility and diverse patterns in trajectories. The spatially consistent constrained loss function strengthens spatial feature learning through differential error penalty adjustments. Experimental results on public datasets from Shenzhen and Xiamen demonstrate recall rates of 0.722 and 0.6 under complete and sparse trajectory scenarios, respectively, outperforming state-of-the-art baselines by an average of 15.64%. This research provides robust technical support for intelligent travel recommendations and traffic management.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12143568 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0325471 | PLOS |
PLoS One
September 2025
School of Computer Science and Technology, Huaiyin Normal University, Huai'an, Jiangsu, China.
Previous studies have demonstrated that metric learning approaches yield remarkable performance in the field of kinship verification. Nevertheless, a prevalent limitation of most existing methods lies in their over-reliance on learning exclusively from specified types of given kin data, which frequently results in information isolation. Although generative-based metric learning methods present potential solutions to this problem, they are hindered by substantial computational costs.
View Article and Find Full Text PDFRadiother Oncol
September 2025
Department of Radiotherapy Center, 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325000, China. Electronic address:
Background: Accurate delineation of regions of interest (ROIs) is critical for feature extraction and selection in radiomics-based prediction models.
Purpose: To develop a combined dosiomics and deep learning (DL) model for predicting grade ≥ 2 radiation esophagitis (RE) in lung cancer patients undergoing radiotherapy, we propose a multi-task auxiliary learning approach to define accurate and objective ROIs based on radiation dose distribution (RDD) images.
Materials And Methods: Lung cancer patients who underwent radiotherapy were gathered retrospectively from hospital 1 (January 2020 and December 2022) for model development.
PLoS One
September 2025
Symbiosis Institute of Technology, Symbiosis International University, Pune, India.
With the rapid development of industrial automation and intelligent manufacturing, defect detection of electronic products has become crucial in the production process. Traditional defect detection methods often face the problems of insufficient accuracy and inefficiency when dealing with complex backgrounds, tiny defects, and multiple defect types. To overcome these problems, this paper proposes Y-MaskNet, a multi-task joint learning framework based on YOLOv5 and Mask R-CNN, which aims to improve the accuracy and efficiency of defect detection and segmentation in electronic products.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
September 2025
Generalized visual grounding tasks, including Generalized Referring Expression Comprehension (GREC) and Segmentation (GRES), extend the classical visual grounding paradigm by accommodating multi-target and non-target scenarios. Specifically, GREC focuses on accurately identifying all referential objects at the coarse bounding box level, while GRES aims for achieve fine-grained pixel-level perception. However, existing approaches typically treat these tasks independently, overlooking the benefits of jointly training GREC and GRES to ensure consistent multi-granularity predictions and streamline the overall process.
View Article and Find Full Text PDFFront Artif Intell
August 2025
Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada.
Precision livestock farming increasingly relies on non-invasive, high-fidelity systems capable of monitoring cattle with minimal disruption to behavior or welfare. Conventional identification methods, such as ear tags and wearable sensors, often compromise animal comfort and produce inconsistent data under real-world farm conditions. This study introduces Dairy DigiD, a deep learning-based biometric classification framework that categorizes dairy cattle into four physiologically defineda groups-young, mature milking, pregnant, and dry cows-using high-resolution facial images.
View Article and Find Full Text PDF