Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Solid-state batteries are widely recognized as the next-generation energy storage devices with high specific energy, high safety, and high environmental adaptability. However, the research and development of solid-state batteries are resource-intensive and time-consuming due to their complex chemical environment, rendering performance prediction arduous and delaying large-scale industrialization. Artificial intelligence serves as an accelerator for solid-state battery development by enabling efficient material screening and performance prediction. This review will systematically examine how the latest progress in using machine learning (ML) algorithms can be used to mine extensive material databases and accelerate the discovery of high-performance cathode, anode, and electrolyte materials suitable for solid-state batteries. Furthermore, the use of ML technology to accurately estimate and predict key performance indicators in the solid-state battery management system will be discussed, among which are state of charge, state of health, remaining useful life, and battery capacity. Finally, we will summarize the main challenges encountered in the current research, such as data quality issues and poor code portability, and propose possible solutions and development paths. These will provide clear guidance for future research and technological reiteration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12144031 | PMC |
http://dx.doi.org/10.1007/s40820-025-01797-y | DOI Listing |