98%
921
2 minutes
20
Facial expression recognition develops rapidly during infancy and improves from childhood to adulthood. As a critical component of social communication, this skill enables individuals to interpret others' emotions and intentions. However, the brain mechanisms driving the development of this skill remain largely unclear due to the difficulty of obtaining data with both high spatial and temporal resolution from young children. By analyzing intracranial EEG data collected from childhood (5-10 years old) and post-childhood groups (13-55 years old), we find differential involvement of high-level brain areas in processing facial expression information. For the post-childhood group, both the posterior superior temporal cortex (pSTC) and the dorsolateral prefrontal cortex (DLPFC) encode facial emotion features from a high-dimensional, continuous space. However, in children, the facial expression information is only significantly represented in the pSTC, not in the DLPFC. Further, the encoding of complex emotions in pSTC is shown to increase with age. Taken together, these data suggest that young children rely more on low-level sensory areas than on the prefrontal cortex for facial emotion processing, leading us to hypothesize that top-down modulation from prefrontal cortex to pSTC gradually matures during development to enable a full understanding of facial emotions, especially complex emotions which need social and life experience to comprehend.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12139743 | PMC |
http://dx.doi.org/10.1101/2025.05.23.655726 | DOI Listing |
Brain
September 2025
Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, 13005 Marseille, France.
The lateral prefrontal cortex (LPFC) serves as a critical hub for higher-order cognitive and executive functions in the human brain, coordinating brain networks whose disruption has been implicated in many neurological and psychiatric disorders. While transcranial brain stimulation treatments often target the LPFC, our current understanding of connectivity profiles guiding these interventions based on electrophysiology remains limited. Here, we present a high-resolution probabilistic map of bidirectional effective connectivity between the LPFC and widespread cortical and subcortical regions.
View Article and Find Full Text PDFAm J Audiol
September 2025
Department of Special Education and Communication Disorders, University of Nebraska-Lincoln.
Purpose: This study investigated the effects of age-related hearing decline on functional networks using resting-state functional magnetic resonance imaging (rs-fMRI). The main objective of the present study was to examine resting-state functional connectivity (RSFC) and graph theory-based network efficiency metrics in 49 adults categorized by age and hearing thresholds to identify the neural mechanisms of age-related hearing decline.
Method: Forty-nine adults with self-reported normal hearing underwent pure-tone audiometry and rs-fMRI.
Cereb Cortex
August 2025
Department of Developmental Psychology, University of Amsterdam, Nieuwe Achtergracht 129b, 1018 WS Amsterdam, The Netherlands.
Social learning, a hallmark of human behavior, entails integrating other's actions or ideas with one's own. While it can accelerate the learning process by circumventing slow and costly individual trial-and-error learning, its effectiveness depends on knowing when and whose information to use. In this study, we explored how individuals use social information based on their own and others' levels of uncertainty.
View Article and Find Full Text PDFJAACAP Open
September 2025
Stanford University, Stanford, California.
Objective: To assess biological factors associated with anhedonia in depression and amotivation in cannabis use (PROSPERO: CRD42023422438).
Method: A systematic review was conducted of 8 electronic databases. Inclusion criteria included original research studies that investigated the association of biological factors or behavioral tasks with depression combined with concepts of anhedonia or cannabis combined with concepts of amotivation including apathy.
Alzheimers Dement
September 2025
Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Introduction: Antisocial behaviors occur in dementia, but the underlying neurocognitive mechanisms remain underexplored. We administered a decision-making task measuring patients' harm aversion by offering options to shock themselves or another person in exchange for money, hypothesizing that task performance would relate to antisocial behaviors and ventromedial/orbitofrontal cortex (vmPFC/OFC) atrophy.
Methods: Among 43 dementia patients (n = 23 behavioral variant frontotemporal dementia [bvFTD], n = 20 Alzheimer's disease [AD]), we used linear regressions to measure relationships between harm aversion and antisocial behavior, psychopathic personality traits, socioemotional functions, and vmPFC/OFC cortical thickness, controlling for age, sex, and cognitive dysfunction.