Surface wettability engineering of MoS quantum dot-decorated NiCoO nanospheres for enhanced oxygen evolution reaction.

Chem Commun (Camb)

Research Center for Nano Photoelectrochemistry and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, China.

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Modulating MoS quantum dots enhances the hydrophilicity of NiCoO, accelerates bubble detachment, promotes mass transfer, and consequently enhances catalytic activity. The optimized catalyst achieves a low overpotential of 272 mV at 10 mA cm and a Tafel slope of 76.3 mV dec in 1.0 mol L KOH.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d5cc02615fDOI Listing

Publication Analysis

Top Keywords

mos quantum
8
surface wettability
4
wettability engineering
4
engineering mos
4
quantum dot-decorated
4
dot-decorated nicoo
4
nicoo nanospheres
4
nanospheres enhanced
4
enhanced oxygen
4
oxygen evolution
4

Similar Publications

Electric gating in atomically thin field-effect devices based on transition-metal dichalcogenides has recently been employed to manipulate their excitonic states, even producing exotic phases of matter, such as an excitonic insulator or Bose-Einstein condensate. Here, we mimic the electric gating effect of a bilayer-MoS on graphite by charge transfer induced by the adsorption of molecular p- and n-type dopants. The electric fields produced are evaluated from the electronic energy-level realignment and Stark splitting determined by X-ray and UV photoelectron spectroscopy measurements and compare very well with literature values obtained by optical spectroscopy for similar systems.

View Article and Find Full Text PDF

To assess the efficacy of a mixed-dimensional van der Waals (vdW) heterostructure in modulating the optoelectronic responses of nanodevices, the charge transport properties of the transition-metal dichalcogenide (TMD)-based heterostructure comprising zero-dimensional (0D) WS quantum dots (QDs) and two-dimensional (2D) MoS flakes are critically analyzed. Herein, a facile strategy was materialized in developing an atomically thin phototransistor assembled from mechanically exfoliated MoS and WS QDs synthesized using a one-pot hydrothermal route. The amalgamated photodetectors exhibited a high responsivity of ∼8000 A/W at an incident power of 0.

View Article and Find Full Text PDF

Topological Wigner Molecule Crystal in Transition-Metal Dichalcogenide Moiré Superlattices.

ACS Nano

September 2025

Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.

As a versatile platform for exploring exotic quantum phases, moiré superlattices, ranging from twisted graphene to twisted transition metal dichalcogenides, have been intensively studied. In this work, based on exact diagonalization and Hartree-Fock mean-field calculations, the interaction-driven topological phases are investigated in hole-doped twisted bilayer MoS at the high filling factor = 3. Besides the nematic insulator and quantum anomalous Hall phases, the topological Wigner molecule crystal (TWMC) phase is found in the phase diagram.

View Article and Find Full Text PDF

Second-order nonlinear optical processes are fundamental to photonics, spectroscopy, and information technologies, with material platforms playing a pivotal role in advancing these applications. Here, we demonstrate the exceptional nonlinear optical properties of the van der Waals crystal 3R-MoS, a rhombohedral polymorph exhibiting high second-order optical susceptibility ( ) and remarkable second-harmonic generation (SHG) capabilities. By designing high quality factor resonances in 3R-MoS metasurfaces supporting quasi-bound states in the continuum (qBIC), we first demonstrate SHG efficiency enhancement exceeding 10.

View Article and Find Full Text PDF

Broadband anisotropic photodetectors show great promise for polarization-sensitive imaging and multispectral optoelectronic systems yet face critical challenges in material anisotropy modulation and broadband sensitivity. Weyl semimetals exhibit giant optical anisotropy and tunable heterojunction band alignment, enabling high-performance anisotropic photodetection. Herein, ultrabroadband PDs based on the NbNiTe (niobium nickel telluride), enabled by antenna integration and heterostructure engineering, achieve high sensitivity from visible to Terahertz (THz).

View Article and Find Full Text PDF