98%
921
2 minutes
20
The rare earth elements are critically important for a wide range of modern technologies. However, obtaining them selectively and efficiently from natural sources and recycled materials is challenging and often requires harsh or wasteful conditions. Here we show that a macrocyclic chelator appended to a solid resin can overcome this challenge by acting as a robust platform for both the extraction and separation of these elements. This resin preferably captures the large rare earth elements in mixtures of these ions, giving rise to higher extraction efficiencies for them over the smaller ions. We further demonstrate that this resin can be used to separate rare earth elements. As a proof-of-principle validation, this resin was demonstrated to selectively extract rare earth elements in the presence of many different types of competing metal ions in a bioleachate solution obtained from autoslag waste, leading to their enrichment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12141661 | PMC |
http://dx.doi.org/10.1038/s42004-025-01565-4 | DOI Listing |
PLoS One
September 2025
School of Nuclear Science and Technology, University of South China Hengyang, Hunan, China.
With the rapid development of the nuclear medicine business worldwide, the removal of iodine-131 from specific contaminated environments to protect public health has important application prospects. In this study, the surface decontamination mechanism of Ce(IV)/HNO3 as a decontaminant for iodine-131-contaminated nonmetallic materials was investigated by using an orthogonal experimental method and scanning electron microscopy (SEM). During the preparation experiments with the contaminated materials, both quartz glass and ceramics reached peak activity concentration levels at 4 h of adsorption (contamination) by using immersion; the decontamination factor (DF) was selected as the test index for the decontamination experiments.
View Article and Find Full Text PDFMar Life Sci Technol
August 2025
State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005 China.
Unlabelled: Anaerobic ammonium oxidation (anammox) plays a critical role in nitrogen loss in estuarine and marine environments. However, the mechanisms underlying the formation and maintenance of the anammox bacterial community remain unclear. This study analyzed the anammox bacterial diversity, community structure, and interspecific relationships in three estuaries along the Chinese coastline -the Changjiang Estuary (CJE), the Oujiang Estuary (OJE), and the Jiulong River Estuary (JLE) - as well as the South China Sea (SCS) to elucidate their community assembly mechanisms.
View Article and Find Full Text PDFACS Omega
September 2025
Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico.
In this work, carbon nanodots (CNDs) were synthesized via a pyrolysis carbonization method using petals. The synthesized CNDs exhibit optical absorption in the UV region, with a tail extending out into the visible range. When these CNDs interact with Ho ions through charge transfer processes, they form an RE-CNDs hybrid (Rare Earth-CNDs hybrid), resulting in fluorescence quenching in an aqueous solution.
View Article and Find Full Text PDFInorg Chem
September 2025
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States.
A series of six quinary rare-earth sulfides CeEuNaSiS, CeEuKSiS, CeEuRbSiS, CeEuCsSiS, CeEuAgSiS, and CeEuCuSiS were obtained in an alkali iodide flux using the boron-chalcogen mixture (BCM) method. Single crystal X-ray diffraction was used to determine the structures of the high quality single crystals that were grown; their elemental compositions were confirmed by energy-dispersive spectroscopy (EDS). The compounds crystallize in the hexagonal crystal system in the noncentrosymmetric space group 6.
View Article and Find Full Text PDFPlant Sci
September 2025
Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin, Via Quarello15/a, 10135 Turin, Italy.
Cerium (Ce), the most abundant of the rare Earth elements (REEs), is increasingly recognized as an environmental contaminant due to its growing applications in various industrial and agricultural sectors. This study investigates the physiological, biochemical, and molecular responses of Brassica rapa L. plants to varying concentrations of Ce exposure to elucidate its effects on plant growth, metabolism, and stress responses.
View Article and Find Full Text PDF