Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Rapid and early detection of SARS-CoV-2 infections, especially during the pre- or asymptomatic phase, could aid in reducing virus spread. Physiological parameters measured by wearable devices can be efficiently analysed to provide early detection of infections. The COVID-19 Remote Early Detection (COVID-RED) trial investigated the use of a wearable device (Ava bracelet) for improved early detection of SARS-CoV-2 infections in real-time.

Trial Design: Prospective, single-blinded, two-period, two-sequence, randomised controlled crossover trial.

Methods: Subjects wore a medical device and synced it with a mobile application in which they also reported symptoms. Subjects in the experimental condition received real-time infection indications based on an algorithm using both wearable device and self-reported symptom data, while subjects in the control arm received indications based on daily symptom-reporting only. Subjects were asked to get tested for SARS-CoV-2 when receiving an app-generated alert, and additionally underwent periodic SARS-CoV-2 serology testing. The overall and early detection performance of both algorithms was evaluated and compared using metrics such as sensitivity and specificity.

Results: A total of 17,825 subjects were randomised within the study. Subjects in the experimental condition received an alert significantly earlier than those in the control condition (median of 0 versus 7 days before a positive SARS-CoV-2 test). The experimental algorithm achieved high sensitivity (93.8-99.2%) but low specificity (0.8-4.2%) when detecting infections during a specified period, while the control algorithm achieved more moderate sensitivity (43.3-46.4%) and specificity (66.4-65.0%). When detecting infection on a given day, the experimental algorithm also achieved higher sensitivity compared to the control algorithm (45-52% versus 28-33%), but much lower specificity (38-50% versus 93-97%).

Conclusions: Our findings highlight the potential role of wearable devices in early detection of SARS-CoV-2. The experimental algorithm overestimated infections, but future iterations could finetune the algorithm to improve specificity and enable it to differentiate between respiratory illnesses.

Trial Registration: Netherlands Trial Register number NL9320.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12140236PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0325116PLOS

Publication Analysis

Top Keywords

early detection
28
detection sars-cov-2
16
sars-cov-2 infections
12
experimental algorithm
12
algorithm achieved
12
remote early
8
algorithm
8
wearable devices
8
wearable device
8
subjects experimental
8

Similar Publications

To analyze in-hospital mortality in children undergoing congenital heart interventions in the only public referral center in Amazonas, North Brazil, between 2014 and 2022. This retrospective cohort study included 1041 patients undergoing cardiac interventions for congenital heart disease, of whom 135 died during hospitalization. Records were reviewed to obtain demographic, clinical, and surgical data.

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) remain a leading cause of death, particularly in developing countries, where their incidence continues to rise. Traditional CVD diagnostic methods are often time-consuming and inconvenient, necessitating more efficient alternatives. Rapid and accurate measurement of cardiac biomarkers released into body fluids is critical for early detection, timely intervention, and improved patient outcomes.

View Article and Find Full Text PDF

Importance: Behavioral variant frontotemporal dementia (bvFTD), the most common subtype of FTD, is a leading form of early-onset dementia worldwide. Accurate and timely diagnosis of bvFTD is frequently delayed due to symptoms overlapping with common psychiatric disorders, and interest has increased in identifying biomarkers that may aid in differentiating bvFTD from psychiatric disorders.

Objective: To summarize and critically review studies examining whether neurofilament light chain (NfL) in cerebrospinal fluid (CSF) or blood is a viable aid in the differential diagnosis of bvFTD vs psychiatric disorders.

View Article and Find Full Text PDF

Importance: Merkel cell carcinoma (MCC) is typically caused by the Merkel cell polyomavirus (MCPyV) and recurs in 40% of patients. Half of patients with MCC produce antibodies to MCPyV oncoproteins, the titers of which rise with disease recurrence and fall after successful treatment.

Objective: To assess the utility of MCPyV oncoprotein antibodies for early detection of first recurrence of MCC in a real-world clinical setting.

View Article and Find Full Text PDF

Utility and performance of cerebrospinal fluid cytology in discriminating central nervous system infections and brain tumors.

J Neurooncol

September 2025

Department of Neurology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan Province, China.

Background And Objective: Differentiating central nervous system infections (CNSIs) from brain tumors (BTs) is difficult due to overlapping features and the limited individual indicators, and cerebrospinal fluid (CSF) cytology remains underutilized. To improve differential diagnosis, we developed a model based on 9 early, cost-effective cerebrospinal fluid parameters, including CSF cytology.

Methods: Patients diagnosed with CNSIs or BTs at Xiangya Hospital of Central South University between October 1st, 2017 and March 31st, 2024 were enrolled and divided into the training set and the test set.

View Article and Find Full Text PDF