Background: Rapid and early detection of SARS-CoV-2 infections, especially during the pre- or asymptomatic phase, could aid in reducing virus spread. Physiological parameters measured by wearable devices can be efficiently analysed to provide early detection of infections. The COVID-19 Remote Early Detection (COVID-RED) trial investigated the use of a wearable device (Ava bracelet) for improved early detection of SARS-CoV-2 infections in real-time.
View Article and Find Full Text PDFBackground With the increase of highly portable, wireless, and low-cost ultrasound devices and automatic ultrasound acquisition techniques, an automated interpretation method requiring only a limited set of views as input could make preliminary cardiovascular disease diagnoses more accessible. In this study, we developed a deep learning method for automated detection of impaired left ventricular (LV) function and aortic valve (AV) regurgitation from apical 4-chamber ultrasound cineloops and investigated which anatomical structures or temporal frames provided the most relevant information for the deep learning model to enable disease classification. Methods and Results Apical 4-chamber ultrasounds were extracted from 3554 echocardiograms of patients with impaired LV function (n=928), AV regurgitation (n=738), or no significant abnormalities (n=1888).
View Article and Find Full Text PDFBMJ Open
June 2022
Objectives: We investigated machinelearningbased identification of presymptomatic COVID-19 and detection of infection-related changes in physiology using a wearable device.
Design: Interim analysis of a prospective cohort study.
Setting, Participants And Interventions: Participants from a national cohort study in Liechtenstein were included.
Containing the COVID-19 pandemic requires rapidly identifying infected individuals. Subtle changes in physiological parameters (such as heart rate, respiratory rate, and skin temperature), discernible by wearable devices, could act as early digital biomarkers of infections. Our primary objective was to assess the performance of statistical and algorithmic models using data from wearable devices to detect deviations compatible with a SARS-CoV-2 infection.
View Article and Find Full Text PDFObjectives: It is currently thought that most-but not all-individuals infected with SARS-CoV-2 develop symptoms, but the infectious period starts on average 2 days before the first overt symptoms appear. It is estimated that pre- and asymptomatic individuals are responsible for more than half of all transmissions. By detecting infected individuals before they have overt symptoms, wearable devices could potentially and significantly reduce the proportion of transmissions by pre-symptomatic individuals.
View Article and Find Full Text PDFObjectives: To compare methods to adjust for confounding by disease severity during multicenter intervention studies in ICU, when different disease severity measures are collected across centers.
Design: In silico simulation study using national registry data.
Setting: Twenty mixed ICUs in The Netherlands.
Background: When profiling health care providers, adjustment for case-mix is essential. However, conventional risk adjustment methods may perform poorly, especially when provider volumes are small or events rare. Propensity score (PS) methods, commonly used in observational studies of binary treatments, have been shown to perform well when the amount of observations and/or events are low and can be extended to a multiple provider setting.
View Article and Find Full Text PDFBMC Med Res Methodol
June 2018
Background: When profiling multiple health care providers, adjustment for case-mix is essential to accurately classify the quality of providers. Unfortunately, misclassification of provider performance is not uncommon and can have grave implications. Propensity score (PS) methods have been proposed as viable alternatives to conventional multivariable regression.
View Article and Find Full Text PDFJ Clin Epidemiol
June 2018
Objectives: In medical research, covariates (e.g., exposure and confounder variables) are often measured with error.
View Article and Find Full Text PDFWith the increased use of data not originally recorded for research, such as routine care data (or 'big data'), measurement error is bound to become an increasingly relevant problem in medical research. A common view among medical researchers on the influence of random measurement error (i.e.
View Article and Find Full Text PDF