98%
921
2 minutes
20
Background: Understanding the evolutionary history of cultivated rice (Oryza sativa) and the genomic basis of heterosis is crucial for advancing rice productivity and ensuring global food security. The origins of the two main subspecies, indica and japonica, remain contentious, with debates over single versus multiple domestication events. Additionally, the genetic mechanisms underlying heterosis in elite super-hybrid rice varieties are not fully elucidated.
Results: We performed a comprehensive genome-scale phylogenomic analysis using 33 high-quality Oryzeae genomes, integrating 39,984 gene trees. Our findings support the independent origins of indica and japonica subspecies, with molecular dating and synonymous substitution rates indicating nearly synchronous evolutionary trajectories. Analysis of 1383 gene duplications in the common ancestor of O. sativa revealed their involvement in vital biological processes and environmental adaptability. Phylogenomic analyses revealed no significant genomic signatures indicative of extensive hybridization events between the progenitors of indica and japonica. Newly generated 71.67 Gb of whole-genome sequencing data of five elite super-hybrid rice varieties and their progenitors uncovered differential positive selection and genetic exchanges between subspecies, contributing to heterosis formation. Transcriptome analyses highlighted the predominance of non-additive gene expression in heterosis, especially in genes related to DNA repair and recombination. Furthermore, expression quantitative trait locus (eQTL) and de novo mutation analyses identified key developmental and stress response genes, offering potential targets for enhancing heterosis.
Conclusions: Our study provides robust evidence for the independent domestication of indica and japonica rice subspecies and elucidates the genomic features associated with heterosis in super-hybrid rice. By identifying key genes linked to adaptability and heterosis, we offer valuable insights and genetic resources for breeding programs aimed at improving rice yield and resilience. These findings enhance our understanding of rice evolution and the complex genetic factors driving heterosis, contributing to future strategies for agricultural productivity enhancement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12139199 | PMC |
http://dx.doi.org/10.1186/s12915-025-02255-2 | DOI Listing |
Carbohydr Polym
October 2025
Institute of Rice Industry Technology Research, College of Agronomy, Guizhou University, Guiyang 550025, China; School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China. Electronic address:
The application of nitrogen (N) fertilizer increases rice yield while potentially leading to a decline in quality, but the intrinsic mechanism remains unclear. Herein, the effects of varying N levels (0, 200, 260 and 400 kg N ha) on the texture, rheological characteristics and starch molecular structure of four super hybrid indica rice cultivars with different yield potentials were investigated. When N levels increased from 0 to 400 kg N ha, the apparent amylose content (ACC) decreased by 10.
View Article and Find Full Text PDFBMC Biol
June 2025
Institute of Rice Industry Technology Research, College of Agriculture, Guizhou University, Guiyang, 550025, China.
Background: Understanding the evolutionary history of cultivated rice (Oryza sativa) and the genomic basis of heterosis is crucial for advancing rice productivity and ensuring global food security. The origins of the two main subspecies, indica and japonica, remain contentious, with debates over single versus multiple domestication events. Additionally, the genetic mechanisms underlying heterosis in elite super-hybrid rice varieties are not fully elucidated.
View Article and Find Full Text PDFPlants (Basel)
February 2025
Key Laboratory of Southwest Rice Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences, Deyang 618000, China.
Investigating the variation in and key factors influencing the yield of super hybrid rice cultivated at different altitudes but within the same latitude provides valuable insights for further improvements in super hybrid rice grain yields. Field and pot experiments were conducted using four rice varieties at the following two altitudinal locations in Sichuan Province, China: Hanyuan (high, 1000 m) and Luxian (low, 300 m). The results indicated that Hanyuan achieved an average grain yield of 13.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education, Central South University of Forestry and Technology, Changsha, China.
() is one of the key genes in regulating photosynthesis and plant architecture. As the antagonistic effects of have concurrent impacts on photosynthesis and yield component traits, how we can effectively utilize the gene to further increase rice yield is not clear. In this study, we used two different main functional alleles, each of which has previously been proven to have specifically advantageous traits, and tested whether the combined alleles have a higher yield than the homozygous alleles.
View Article and Find Full Text PDFPlants (Basel)
October 2024
National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Eco-Physiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
Research indicates that, owing to the enhanced grain-filling rate of tetraploid rice, its yield has notably improved compared to previous levels. Studies conducted on diploid rice have revealed that optimal planting density and fertilization rates play crucial roles in regulating rice yield. In this study, we investigated the effects of different nitrogen application and planting density treatments on the growth, development, yield, and nitrogen utilization in tetraploid (represented by T7, an indica-japonica conventional allotetraploid rice) and diploid rice (Fengliangyou-4, represented by FLY4, a two-line super hybrid rice used as a reference variety for the approval of super rice with a good grain yield performance).
View Article and Find Full Text PDF