Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The diversity of cellular and tissue structures can arise from a few basic cell shapes, which undergo various transformations based on biophysical constraints on cytoskeletal organization. While cellular geometry has been linked with selected biological processes such as polarity, signaling or morphogenesis, the orchestration of the whole proteome in association to cell shape is still poorly understood. In this study, using more than 1 million images of single cells stained for 11,998 proteins across 10 cell lines in the Human Protein Atlas database, we performed an integrated analysis of organelle, pathway and single protein levels in association to a 2D cellular shapespace. We found that cell and nuclear shapes across cell lines exist in a shared continuum. We also found that the subcellular organelle topology varies across cell lines, but remains robust within each cell line's shapespace. At the single protein level, we found that cells of different shapes in the same cell cycle phase might be preparing for different fates, and that many non-cell cycle proteins expressed shape-based abundance variation. Using the same coordinate framework defined by shape, we could analyze the distribution shift of protein spatial localization under drug perturbation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12132440PMC
http://dx.doi.org/10.1101/2025.05.13.653868DOI Listing

Publication Analysis

Top Keywords

cell lines
12
cell
9
cell shapes
8
single protein
8
shapes cell
8
shapes decode
4
decode molecular
4
molecular phenotypes
4
phenotypes image-based
4
image-based spatial
4

Similar Publications

Adeno-associated virus (AAV) vectors are widely used in gene therapy, particularly for liver-targeted treatments. However, predicting human-specific outcomes, such as transduction efficiency and hepatotoxicity, remains challenging. Reliable models are urgently needed to bridge the gap between preclinical studies and clinical applications.

View Article and Find Full Text PDF

Reconstructing bone defects remains a significant challenge in clinical practice, driving the urgent need for advanced artificial grafts that simultaneously promote vascularization and osteogenesis. Addressing the critical trade-off between achieving high porosity/strength and effective bioactivity at safe ion doses, we incorporated strontium (Sr) into β-tricalcium phosphate (β-TCP) scaffolds with a triply periodic minimal surface (TPMS) structure using digital light processing (DLP)-based three-dimensional (3D) printing. Systematically screening Sr concentrations (0-10 mol%), we identified 10 mol% as optimal, leveraging the synergy between the biomimetic TPMS architecture, providing exceptional mechanical strength (up to 1.

View Article and Find Full Text PDF

Neutrophil extracellular traps (NETs) are DNA-protein structures released during a form of programmed neutrophil death known as NETosis. While NETs have been implicated in both tumor inhibition and promotion, their functional role in cancer remains ambiguous. In this study, we compared the NET-forming capacity and functional effects of NETs derived from lung cancer (LC) patients and healthy donors (H).

View Article and Find Full Text PDF

Integrative profiling of lung cancer biomarkers EGFR, ALK, KRAS, and PD-1 with emphasis on nanomaterials-assisted immunomodulation and targeted therapy.

Front Immunol

September 2025

Department of Thoracic Surgery, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China.

Background: Lung cancer remains the leading cause of cancer-related mortality globally, primarily due to late-stage diagnosis, molecular heterogeneity, and therapy resistance. Key biomarkers such as EGFR, ALK, KRAS, and PD-1 have revolutionized precision oncology; however, comprehensive structural and clinical validation of these targets is crucial to enhance therapeutic efficacy.

Methods: Protein sequences for EGFR, ALK, KRAS, and PD-1 were retrieved from UniProt and modeled using SWISS-MODEL to generate high-confidence 3D structures.

View Article and Find Full Text PDF

Follicular dendritic cell sarcoma (FDCS) is a rare tumour derived from dendritic cells located in B-follicles that play a pivotal role in the adaptive immune response. Surgery is the mainstay of treatment for localized disease; however, the management of unresectable or advanced disease is less well-defined. To date, to the best of our knowledge, there is no established or preferred chemotherapeutic regimen, although a number of regimens (primarily used in lymphomas and sarcomas) have been utilized with suboptimal outcomes.

View Article and Find Full Text PDF