98%
921
2 minutes
20
The catalytic activity and morphological structure are closely related. Herein, the spinel structure CuCoO with different morphologies was constructed as the research model for the electrocatalytic benzyl alcohol (BA) oxidation and hydrogen evolution reaction (HER). By modulating the morphological structure, oxygen vacancy, and the high valence active centers, the octahedral CuCoO exhibited superior electrocatalytic activity and stability compared to other CuCoO samples with nanoplate/nanowire morphologies. Meanwhile, density functional theory calculations elucidated that octahedral CuCoO could significantly lower the reaction energy barriers of BA oxidation. Furthermore, the crystal orbital Hamilton population analysis was exploited to probe the intermediate adsorption/desorption on the vacancies. The morphology structure and vacancy effect contributed to the improved electrocatalytic performance. The present work demonstrated the important influence of the morphology structure and the accompanying electronic/vacancy effect on the catalytic activity experimentally and theoretically.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.5c01879 | DOI Listing |
Biol Proced Online
September 2025
Division of Surface Physics, Department of Physics and Earth System Sciences, University of Leipzig, Linnéstr. 5, 04103, Leipzig, Germany.
Background: Organotypic long-term cultivation of vascularized retina explants is a major challenge for application in drug development, drug screening, diagnostics and future personalized medicine. With this background, an assay and protocol for organotypic culture of vascularized retina explants in vitro with optimum tissue integrity preservation is developed and demonstrated.
Methods: Morphological, histologic and biochemical integrity as well as viability of vascularized retina explants are compared as function of cultivation time for differently structured nanotube scaffolds.
Acad Radiol
September 2025
Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan (S.K., Y.K., Y.T.).
Rationale And Objectives: The thyroid foramen (TF) is a congenital anatomical variant of the thyroid cartilage, characterized by a small opening that may transmit neurovascular structures. Although benign, TF can be misinterpreted on imaging as a cartilage fracture or tumor invasion, and may pose a surgical risk if unrecognized. Despite these potential implications, TF remains under-recognized in routine radiological practice.
View Article and Find Full Text PDFThe genus Flapocephalus Deshmukh, 1979, is a little-known group of lecanicephalidean cestodes parasitizing cowtail rays (genus Pastinachus Rüppell) mainly in the Indo-Pacific region. Since the erection of the genus, with Flapocephalus trygonis Deshmukh, 1979, as the type species, and the description of a second species, Flapocephalus saurashtri Shinde and Deshmukh, 1979, both from Pastinachus sephen (Fabricius) from India, reports of this genus have been restricted mainly to brief mentions or discussion of its validity and taxonomic placement. More recently, phylogenetic analyses based on molecular sequence data that included specimens of Flapocephalus have supported Flapocephalus as a distinct genus allied with the Polypocephalidae Meggitt, 1924.
View Article and Find Full Text PDFProc Biol Sci
September 2025
School of Life Sciences, Jilin University, Changchun, Jilin 130012, People's Republic of China.
Between the third and sixth centuries AD (Anno Domini), the Xianbei emerged as a dominant nomadic power in the Eastern Eurasian Steppe, distinguished by their exceptional equestrian culture and the pivotal role of cavalry in warfare. Despite their historical significance, detailed knowledge of their cavalry's weaponry and equipment-particularly armour-remains fragmentary. As a critical element of military technology, armour offers valuable insights into ancient combat strategies and cultural practices.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Nanoscience and Nanoengineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey; Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey. Electronic address:
This study presents the development of multifunctional starch-based biopolymer films reinforced with nitrogen-doped carbon quantum dots (N-CQDs), synthesized via a hydrothermal method, and exhibiting a high quantum yield (~70 %). N-CQDs were incorporated into the starch matrix at varying concentrations (0.1-1.
View Article and Find Full Text PDF