98%
921
2 minutes
20
Background: This study aims to identify branched-chain amino acid (BCAA) plasma metabolites and gene signatures that enhance prognostic assessments in non-small cell lung cancer (NSCLC) patients receiving immunotherapy.
Methods: Plasma metabolites were measured using untargeted UPLC-MS/MS (n = 94 and 40), with lymphocyte subset tests on 72 patients. BCAA-related subtypes were identified in NSCLC datasets (n = 274, 176, and 196). A prognostic risk model was developed and validated in NSCLC (n = 16, 27, 24, and 339), melanoma (n = 25), and pan-cancer ICIs cohorts (n = 330 and 81). Immune cell infiltration and prognostic signatures were validated using mIF (n = 21 in CHCAMS), scRNA-seq (n = 8 and 21), and spatial transcriptomics (n = 2 and 6). Cell and animal experiments involving HMGCS1 were conducted in a lung cancer model. Additionally, based on our previous findings that B cells with higher malignancy exhibited enhanced cholesterol homeostasis pathways in diffuse large B-cell lymphoma (DLBCL), we further analyzed the prognostic value of HMGCS1 using our spatial transcriptomics (n = 10) and immunohistochemistry (IHC, n = 39) in DLBCL.
Results: Our plasma metabolite analysis showed higher L-leucine levels were associated with better prognosis and had higher T cell counts and CD4 T cell counts (P < 0.05). In GEO datasets, four NSCLC subtypes were identified, showing distinct prognostic outcomes and tumor microenvironment. Five BCAA-related genes (ACAT2, ALDH2, HMGCS1, MLYCD, and PPM1 K) formed a prognostic risk model for NSCLC, validated through Kaplan-Meier and ROC curve analyses in ICI cohorts (P < 0.05). HMGCS1 was an independent prognostic value in ICI cohorts and was negatively correlated with CD8 T cell infiltration, while positively correlating with tumor severity, cholesterol homeostasis, and BCAA degradation across multiple platforms, including GEO datasets, our mIF cohort, public scRNA-seq, and spatial transcriptomics (P < 0.05). And our cell and animal function experiments found HMGCS1 overexpression promotes metabolic pathways and accelerates tumor growth, whereas HMGCS1 knockdown suppresses tumor progression in a mouse model treated with PD-1 monoclonal antibody (P < 0.05). In DLBCL, high HMGCS1 expression was associated with shorter overall survival, enriched in B cells and relapsed patients, correlated with cholesterol homeostasis and amino acid degradation pathways, and its prognostic value was further validated at the protein level by our IHC cohort (P < 0.05).
Conclusions: This study identifies a BCAA-related plasma metabolites and gene signature as effective prognostic markers for NSCLC patients receiving immunotherapy, with HMGCS1 as a key prognostic factor influencing tumor progression and immune response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12131551 | PMC |
http://dx.doi.org/10.1186/s12931-025-03277-8 | DOI Listing |
Multimed Man Cardiothorac Surg
September 2025
Department of Thoracic Surgery, New Cross Hospital, Royal Wolverhampton NHS Trust, Wolverhampton, UK
Three-dimensional (3D) guided robotic-assisted thoracic surgery is increasingly recognized as the pioneering approach for the most complex of pulmonary resections, offering high-definition 3D visualization, enhanced instrument augmentation and tremor-free tissue articulation. Compared with open thoracotomy, the robotic platform is associated with reduced peri-operative morbidity, shorter hospital admissions and faster patient recovery. However, sublobar resections such as segmentectomies remain anatomically and technically demanding, particularly in the context of resecting multiple segments, as showcased in this right S1 and S2 segmentectomy.
View Article and Find Full Text PDFMultimed Man Cardiothorac Surg
September 2025
Department of Cardiothoracic Surgery, St George’s Hospital, St George's University Hospitals NHS Foundation Trust, London, UK
Three-dimensional (3D) guided robotic-assisted thoracic surgery is increasingly recognized as a leading technique for undertaking the most complex pulmonary resections, providing high-definition 3D visualization, advanced instrument control and tremor-free tissue handling. Compared with open thoracotomy, the robotic platform offers reduced peri-operative complications, shorter hospital stays and faster patient recovery. Nevertheless, sublobar resections, such as segmentectomies, remain both anatomically intricate and technically challenging, particularly when resecting multiple segments, as in this left S1 and S2 segmentectomy.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
September 2025
Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Despite significant advancements in the treatment of non-small cell lung cancer (NSCLC) using conventional therapeutic methods, drug resistance remains a major factor contributing to disease recurrence. In this study, we aimed to explore the potential benefits of combining PI3K inhibition with Cisplatin in the context of NSCLC-derived A549 cells. Human non-small cell lung cancer A549 cells were cultured and treated with BKM120, cisplatin, or their combination.
View Article and Find Full Text PDFRadiol Med
September 2025
Breast Imaging Division, Radiology Department, IEO European Institute of Oncology IRCCS, 20141, Milan, Italy.
Metastatic involvement (MB) of the breast from extramammary malignancies is rare, with an incidence of 0.09-1.3% of all breast malignancies.
View Article and Find Full Text PDFNeuroradiology
September 2025
Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China.
Purpose: To develop and validate an integrated model based on MR high-resolution vessel wall imaging (HR-VWI) radiomics and clinical features to preoperatively assess periprocedural complications (PC) risk in patients with intracranial atherosclerotic disease (ICAD) undergoing percutaneous transluminal angioplasty and stenting (PTAS).
Methods: This multicenter retrospective study enrolled 601 PTAS patients (PC+, n = 84; PC -, n = 517) from three centers. Patients were divided into training (n = 336), validation (n = 144), and test (n = 121) cohorts.