Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ultrasensitive antigen recognition between T lymphocytes and cognate targets via immunological synapse (IS) formation enables live cell-based antigen-specific T cell detection. However, unpredictable antigen processing and major histocompatibility complex (MHC) turnover limit specificity. Here, intracellularly polymerized antigen-presenting cells (pAPCs) are developed for modular, persistent antigen display via kinetically driven loading. Although inanimate, pAPCs mimic cellular interactions, inducing IS hallmarks such as supramolecular activation cluster formation, cytoskeletal contraction, and trogocytosis. Incorporation of superparamagnetic nanoparticles allows label-free magnetic isolation of antigen-specific T cells, surpassing MHC-conjugated beads in sensitivity and specificity. In tumor-bearing hosts, pAPCs enrich tumor-reactive lymphocytes, enhancing adoptive T cell therapy and neoantigen-specific T cell identification. Additionally, pAPCs from engineered cells expressing monovalent human MHC enrich virus- and tumor-specific CD8 T cells from human peripheral blood mononuclear cells and human leukocyte antigen-transgenic mice, demonstrating the potential of this cell-gel hybrid platform for precise antigen-specific T cell capture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12130322PMC
http://dx.doi.org/10.1038/s41467-025-60321-3DOI Listing

Publication Analysis

Top Keywords

antigen-specific cell
8
cells human
8
cell
5
cells
5
polymerised superparamagnetic
4
antigen
4
superparamagnetic antigen
4
antigen presenting
4
presenting cell
4
cell lymphocyte
4

Similar Publications

Radiation therapy (RT) plays important roles in cancer treatment, and the efficacy of RT depends on the abscopal effect, which results in the regression of distant and untreated tumors through localized irradiation of a single tumor lesion. This effect is mediated by effector tumor antigen-specific T cells (ETASTs) activated by RT. Monitoring the radiation-induced changes in ETASTs can be used to predict the abscopal effect.

View Article and Find Full Text PDF

Activation of PD-1/PD-L1 immune checkpoint by Zika virus.

PLoS Pathog

September 2025

School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.

Zika virus (ZIKV) has emerged as a rising concern in global health in recent years. The role of PD-1/PD-L1 immune checkpoint in acute ZIKV infection remains to be understood. In this study we demonstrated the activation of PD-1/PD-L1 immune checkpoint by ZIKV.

View Article and Find Full Text PDF

Unlabelled: Dendritic cells (DCs) are the primary inducers of immunity induced by infection or vaccination. To stimulate durable T cell-mediated immunity, multiple DC activities are required. DCs must present antigen, express costimulatory molecules, and secrete inflammatory cytokines to direct T cell activation.

View Article and Find Full Text PDF

Potential Impact of Extracorporeal Photopheresis on Trained Immunity and Organ Transplant Acceptance.

Transplant Direct

September 2025

Unidad Transplante de О́rganos, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain.

Extracorporeal photopheresis (ECP) is a well-established, safe, and effective immunomodulatory therapy currently used in clinics to decrease T cell-mediated immunity in various disorders, including autoimmune diseases and chronic rejection in organ transplantation. Although the ECP procedure has been shown to induce apoptotic cells that are reintroduced into the patient at the end of the treatment, the precise tolerogenic mechanisms mediated by ECP are not fully understood. Previous in vitro studies have demonstrated that early apoptotic cells express annexins on their cell surface, which suppress myeloid cell activation on stimulation with bacterial lipopolysaccharide through Toll-like receptors.

View Article and Find Full Text PDF

Background: Protein-polysaccharide conjugate vaccines rely on the induction of T-cell-dependent responses that support germinal center (GC) reactions to potentiate the expansion of antigen-specific memory B-cell (MBC) populations and high-avidity antibody responses. The effects of adjuvants on B-cell and antibody responses are well described for protein antigens but remain largely unexplored for conjugated polysaccharidic antigens.

Methods: We assessed the effects of five adjuvants present in licensed vaccines (AS01, AS03, AS04, and aluminum hydroxide [Alum]) or under clinical evaluation (AS37) on the magnitude and quality of antigen-specific antibody responses and local/systemic B-cell responses.

View Article and Find Full Text PDF