Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

De novo assembly and genome binning are fundamental steps for genome-resolved metagenomics analyses. However, the availability of limited computational resources and extensive processing time limit the broader application of these analyses. To address these challenges, the optimization of the parameters employed in these processes can improve the effective utilization of available metagenomics tools. Therefore, this study tested three sets of k-mers (default, reduced, and extended) for their efficiency in metagenome assembly and suitability in recovering metagenome-assembled genomes. The results demonstrate that the reduced set of k-mers outperforms the other two sets in computational efficiency and the quality of results. The assemblies from the default set are comparable with those from the reduced set; however, less complete and highly contaminated metagenome-assembled genomes are obtained at the expense of higher processing time. The extended set of k-mers yields less contiguous but computationally expensive assemblies. This set takes approximately 3-times more processing time than the reduced k-mers and recovers the lowest proportions of high and medium-quality metagenome-assembled genomes. Contrarily, the reduced set produces better assemblies, substantially improving the number and quality of the recovered metagenome-assembled genomes in significantly reduced processing time. Validation of the reduced k-mer set on previously published metagenome datasets further demonstrates its effectiveness not only for human metagenomes but also for the metagenomes of environmental origin. These findings underscore that the reduced k-mer set is optimal for efficient metagenome analyses of varying complexities and origins. This optimization of the k-mer set used in metagenome assemblers significantly reduces computational time while improving the quality of the assemblies and recovered metagenome-assembled genomes. This efficient solution will facilitate the widespread application of genome-resolved analyses, even in resource-limited settings, and help the recovery of better-quality metagenome-assembled genomes for downstream analyses.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12539-025-00722-6DOI Listing

Publication Analysis

Top Keywords

metagenome-assembled genomes
24
reduced set
16
processing time
16
set k-mers
12
k-mer set
12
set
10
reduced
9
novo assembly
8
quality assemblies
8
recovered metagenome-assembled
8

Similar Publications

Exploring extreme environments in Türkiye for novel P450s through metagenomic analysis.

PLoS One

September 2025

Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Türkiye.

Cytochrome P450 enzymes (P450s), particularly those of microbial origin, are highly versatile biocatalysts capable of catalyzing a broad range of regio- and stere-oselective reactions. P450s derived from extremophiles are of particular interest due to their potential tolerance to high temperature, salinity, and acidity. This study aimed to identify and classify novel microbial P450 enzymes from extreme environments across Türkiye, including hydrothermal springs, hypersaline lakes, and an acid-mine drainage site.

View Article and Find Full Text PDF

Metagenomic analysis reveals genetic coupling between TonB-dependent transporters and extracellular enzymes in coastal bacterial communities.

Mar Life Sci Technol

August 2025

State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005 China.

Unlabelled: Marine heterotrophic prokaryotes initially release extracellular enzymes to cleave large organic molecules and then take up ambient substrates via transporters. Given the direct influence of extracellular enzymes on nutrient availability, understanding their diversity and dynamics is crucial in comprehending microbial interactions and organic matter cycling in aquatic ecosystems. In this study, metagenomics was employed to investigate the functional diversity and dynamics of extracellular enzymes and transporters in coastal waters over a 22-day period.

View Article and Find Full Text PDF

Resistomic features and novel genetic element identified in hospital wastewater with short- and long-read metagenomics.

Ecotoxicol Environ Saf

September 2025

Qilu Hospital Qingdao, Cheeloo College of Medicine, Shandong University, Qingdao 266035, China. Electronic address:

The global spread of antimicrobial resistance (AMR) poses a serious threat to public health, with hospital wastewater treatment plants (WWTPs) recognized as a key hotspot for resistant pathogens and antibiotic resistance genes (ARGs). This study employed advanced hybrid sequencing platforms to provide a comprehensive resistomic analysis of a Qingdao WWTP in China, revealing previously uncovered AMR transmission risks. We identified 175 ARG subtypes conferring resistance to 38 antimicrobials, including the last-resort antibiotics, highlighting the extensive and concerning resistance reservoir within this environment.

View Article and Find Full Text PDF

The Earth Hologenome Initiative: Data Release 1.

Gigascience

January 2025

Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, 1350 Copenhagen, Denmark.

Background: The Earth Hologenome Initiative (EHI) is a global endeavor dedicated to revisit fundamental ecological and evolutionary questions from the systemic host-microbiota perspective, through the standardized generation and analysis of joint animal genomic and associated microbial metagenomic data.

Results: The first data release of the EHI contains 968 shotgun DNA sequencing read files containing 5.2 TB of raw genomic and metagenomic data derived from 21 vertebrate species sampled across 12 countries, as well as 17,666 metagenome-assembled genomes reconstructed from these data.

View Article and Find Full Text PDF

Unlabelled: Metagenomics has become a powerful tool for studying microbial communities, allowing researchers to investigate microbial diversity within complex environmental samples. Recent advances in sequencing technology have enabled the recovery of near-complete microbial genomes directly from metagenomic samples, also known as metagenome-assembled genomes (MAGs). However, accurately characterizing these genomes remains a significant challenge due to the presence of sequencing errors, incomplete assembly, and contamination.

View Article and Find Full Text PDF