Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This paper presents MSLesSeg, a new, publicly accessible MRI dataset designed to advance research in Multiple Sclerosis (MS) lesion segmentation. The dataset comprises 115 scans of 75 patients including T1, T2 and FLAIR sequences, along with supplementary clinical data collected across different sources. Expert-validated annotations provide high-quality lesion segmentation labels, establishing a reliable human-labeled dataset for benchmarking. Part of the dataset was shared with expert scientists with the aim to compare the last automatic AI-based image segmentation solutions with an expert-biased handmade segmentation. In addition, an AI-based lesion segmentation of MSLesSeg was developed and technically validated against the last state-of-the-art methods. The dataset, the detailed analysis of researcher contributions, and the baseline results presented here mark a significant milestone for advancing automated MS lesion segmentation research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12126551PMC
http://dx.doi.org/10.1038/s41597-025-05250-yDOI Listing

Publication Analysis

Top Keywords

lesion segmentation
20
multiple sclerosis
8
sclerosis lesion
8
segmentation dataset
8
segmentation
7
dataset
6
lesion
5
mslesseg baseline
4
baseline benchmarking
4
benchmarking multiple
4

Similar Publications

Background: Although traditionally reserved for unresectable lesions, recent studies have provided evidence that in selected patients, microwave ablation (MWA) may provide similar oncologic outcomes compared to liver resection (LR). This study aimed to compare oncologic outcomes of patients with solitary small (<3 cm) colorectal liver metastasis (CRLM) undergoing LR vs laparoscopic MWA.

Study Design: This retrospective study included patients with a solitary CRLM <3cm treated with LR or MWA in three centers over 25-years.

View Article and Find Full Text PDF

Background: With the increasing incidence of skin cancer, the workload for pathologists has surged. The diagnosis of skin samples, especially for complex lesions such as malignant melanomas and melanocytic lesions, has shown higher diagnostic variability compared to other organ samples. Consequently, artificial intelligence (AI)-based diagnostic assistance programs are increasingly needed to support dermatopathologists in achieving more consistent diagnoses.

View Article and Find Full Text PDF

Purpose: To develop and validate a deep learning-based model for automated evaluation of mammography phantom images, with the goal of improving inter-radiologist agreement and enhancing the efficiency of quality control within South Korea's national accreditation system.

Materials And Methods: A total of 5,917 mammography phantom images were collected from the Korea Institute for Accreditation of Medical Imaging (KIAMI). After preprocessing, 5,813 images (98.

View Article and Find Full Text PDF

Segmentectomies Made Easy series: robotic-assisted right S1 and S2 segmentectomy.

Multimed Man Cardiothorac Surg

September 2025

Department of Thoracic Surgery, New Cross Hospital, Royal Wolverhampton NHS Trust, Wolverhampton, UK

Three-dimensional (3D) guided robotic-assisted thoracic surgery is increasingly recognized as the pioneering approach for the most complex of pulmonary resections, offering high-definition 3D visualization, enhanced instrument augmentation and tremor-free tissue articulation. Compared with open thoracotomy, the robotic platform is associated with reduced peri-operative morbidity, shorter hospital admissions and faster patient recovery. However, sublobar resections such as segmentectomies remain anatomically and technically demanding, particularly in the context of resecting multiple segments, as showcased in this right S1 and S2 segmentectomy.

View Article and Find Full Text PDF

Segmentectomies Made Easy series: robotic-assisted left S1 and S2 segmentectomy.

Multimed Man Cardiothorac Surg

September 2025

Department of Cardiothoracic Surgery, St George’s Hospital, St George's University Hospitals NHS Foundation Trust, London, UK

Three-dimensional (3D) guided robotic-assisted thoracic surgery is increasingly recognized as a leading technique for undertaking the most complex pulmonary resections, providing high-definition 3D visualization, advanced instrument control and tremor-free tissue handling. Compared with open thoracotomy, the robotic platform offers reduced peri-operative complications, shorter hospital stays and faster patient recovery. Nevertheless, sublobar resections, such as segmentectomies, remain both anatomically intricate and technically challenging, particularly when resecting multiple segments, as in this left S1 and S2 segmentectomy.

View Article and Find Full Text PDF