98%
921
2 minutes
20
The delivery of lipid nanoparticle (LNP)-mRNAs to the lungs attracts fast increasing interests for vaccination, as the mucosal immunity in the airway can prevent the establishment of an infection rather than only reduce the level of infection associated with systemic immunity triggered via intramuscular injection. The vibrating mesh nebuliser was well utilized to atomize inhalation solutions/suspensions for pulmonary delivery hence employed in this study for aerosolising LNP-mRNAs. In comparison with pre-aerosolised LNP-mRNAs, the post-aerosolised vectors demonstrated a significant increase (t-test, unpaired, p < 0.05) in particle size (215-363 nm vs. 116-130 nm), polydispersity index (PDI: > 0.33 vs. < 0.27), zeta potential (ZP: 11-14 mV vs. 2.6-7.7 mV), and encapsulation efficiency (EE: ∼99 % w/w vs. ∼91 % w/w), indicating a structural alteration upon high-frequency mesh vibration (HFMV). The particle sizes of LNP-mRNAs were further enlarged upon inertial impaction, and the size increments were dependent on the velocities of airflow for impaction and the N/P ratios. The aerosolised mists were fine, with >54 % w/w deposited in lower respiratory tract and >28.5 % w/w further delivered to alveolar regions. Further, a model was created to elucidate the variations of physicochemical properties for LNP-mRNAs upon HFMV and inertial impaction, and it disclosed that the fluidity and shear-induced fusion of LNPs were the fundamental reasons to cause these unfavourable changes particularly the size enlargement. These insights reveal that the effective development of inhaled LNP-mRNAs will rely on shear-less devices, formulation optimizations, inhalable dry powders, and their potential combinations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2025.125796 | DOI Listing |
ACS Nano
September 2025
Department of Emergency and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou 215124, China.
Acute lung injury (ALI) is characterized by the excessive accumulation of reactive oxygen species (ROS), which triggers a severe inflammatory cascade and the destruction of the alveolar-capillary barrier, leading to respiratory failure and life-threatening outcomes. Considering the limitations and adverse effects associated with current therapeutic interventions, developing effective and safe strategies that target the complex pathophysiological mechanisms of ALI is crucial for improving patient outcomes. Herein, we developed an inhalable, multifunctional nanotherapeutic (MSCNVs@CAT) by encapsulating catalase (CAT) in mesenchymal-stem-cell-derived nanovesicles (MSCNVs).
View Article and Find Full Text PDFPLoS One
September 2025
Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America.
Improving the healthcare system is a persistent and pressing challenge. Collaborative Learning Health Systems, or Learning Health Networks (LHNs), are a novel, replicable organizational form in healthcare delivery that show substantial promise for improving health outcomes. To realize that promise requires a scientific understanding that can serve LHNs' improvement and scaling.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Korea.
Volumetric modulated arc therapy (VMAT) for lung cancer involves complex multileaf collimator (MLC) motion, which increases sensitivity to interplay effects with tumour motion. Current dynamic conformal arc methods address this issue but may limit the achievable dose distribution optimisation compared with standard VMAT. This study examined the clinical utility of a VMAT technique with monitor unit limits (VMATliMU) to mimic conformal arc delivery and reduce interplay effects while maintaining plan quality.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106.
The β-adrenergic receptor (βAR), a prototype G protein-coupled receptor, controls cardiopulmonary function underpinning O delivery. Abundance of the βAR is canonically regulated by G protein-coupled receptor kinases and β-arrestins, but neither controls constitutive receptor levels, which are dependent on ambient O. Basal βAR expression is instead regulated by the prolyl hydroxylase/pVHL-E3 ubiquitin ligase system, explaining O responsivity.
View Article and Find Full Text PDFCancer Epidemiol Biomarkers Prev
September 2025
University of Iowa Holden Comprehensive Cancer Center, Iowa City, IA, United States.
Background: Comorbidities may affect incidence and management of cancers. The burden of comorbidities among AIAN cancer patients and survivors is unknown.
Methods: Using SEER-Medicare, we identified AIAN people aged 66+ years diagnosed with female breast, lung, and colorectal cancers (2000-2019), with at least one year of Medicare coverage prior to diagnosis.