98%
921
2 minutes
20
Effective clinical deployment of deep learning models in healthcare demands high generalization performance to ensure accurate diagnosis and treatment planning. In recent years, significant research has focused on improving the generalization of deep learning models by regularizing the sharpness of the loss landscape. Among the optimization approaches that explicitly minimize sharpness, Sharpness-Aware Minimization (SAM) has shown potential in enhancing generalization performance on general domain image datasets. This success has led to the development of several advanced sharpness-based algorithms aimed at addressing the limitations of SAM, such as Adaptive SAM, Surrogate-Gap SAM, Weighted SAM, and Curvature Regularized SAM. These sharpness-based optimizers have shown improvements in model generalization compared to conventional stochastic gradient descent optimizers and their variants on general domain image datasets, but they have not been thoroughly evaluated on medical images. This work provides a review of recent sharpness-based methods for improving the generalization of deep learning networks and evaluates the methods' performance on three medical image datasets, including breast ultrasound, chest X-ray, and colon histopathology images. Our findings indicate that the initial SAM method successfully enhances the generalization of various deep learning models. While Adaptive SAM improves generalization of convolutional neural networks, it fails to do so for vision transformers. Other sharpness-based optimizers, however, do not demonstrate consistent results. The results reveal that contrary to findings in the non-medical domain, SAM is the only recommended sharpness-based optimizer that consistently improves generalization in medical image analysis, and further research is necessary to refine the variants of SAM to enhance generalization performance in this field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12121992 | PMC |
http://dx.doi.org/10.1109/ACCESS.2025.3568641 | DOI Listing |
Driven by eutrophication and global warming, the occurrence and frequency of harmful cyanobacteria blooms (CyanoHABs) are increasing worldwide, posing a serious threat to human health and biodiversity. Early warning enables precautional control measures of CyanoHABs within water bodies and in water works, and it becomes operational with high frequency in situ data (HFISD) of water quality and forecasting models by machine learning (ML). However, the acceptance of early warning systems by end-users relies significantly on the interpretability and generalizability of underlying models, and their operability.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Computer Science, COMSATS University Islamabad, Sahiwal, Pakistan.
The widespread dissemination of fake news presents a critical challenge to the integrity of digital information and erodes public trust. This urgent problem necessitates the development of sophisticated and reliable automated detection mechanisms. This study addresses this gap by proposing a robust fake news detection framework centred on a transformer-based architecture.
View Article and Find Full Text PDFPLoS One
September 2025
College of Business Administration, Northern Border University (NBU), Arar, Kingdom of Saudi Arabia.
The increasing dependence on cloud computing as a cornerstone of modern technological infrastructures has introduced significant challenges in resource management. Traditional load-balancing techniques often prove inadequate in addressing cloud environments' dynamic and complex nature, resulting in suboptimal resource utilization and heightened operational costs. This paper presents a novel smart load-balancing strategy incorporating advanced techniques to mitigate these limitations.
View Article and Find Full Text PDFBioinformatics
September 2025
Novo Nordisk Foundation Center for Protein Research, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark.
Motivation: Representation learning has revolutionized sequence-based prediction of protein function and subcellular localization. Protein networks are an important source of information complementary to sequences, but the use of protein networks has proven to be challenging in the context of machine learning, especially in a cross-species setting.
Results: We leveraged the STRING database of protein networks and orthology relations for 1,322 eukaryotes to generate network-based cross-species protein embeddings.
IEEE Trans Biomed Eng
September 2025
Objective: Diffusion magnetic resonance imaging (dMRI) often suffers from low spatial and angular resolution due to inherent limitations in imaging hardware and system noise, adversely affecting the accurate estimation of microstructural parameters with fine anatomical details. Deep learning-based super-resolution techniques have shown promise in enhancing dMRI resolution without increasing acquisition time. However, most existing methods are confined to either spatial or angular super-resolution, disrupting the information exchange between the two domains and limiting their effectiveness in capturing detailed microstructural features.
View Article and Find Full Text PDF