Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Collectively, various tandem and interspersed repetitive sequences make up approximately half the human genome, yet we have only begun to understand the potential functions of "junk" DNA. Here, we provide a brief overview of various types of repeats, but a full treatment of the repeat genome (repeatome) is beyond the scope of any review. Hence, we focus primarily on less established functions of a few major repeat classes, including pericentromeric satellites and abundant degenerate interspersed repeats, short interspersed nuclear elements (Alu), and long interspersed nuclear elements (L1). A theme developed throughout is how sequence organization in the human karyotype provides insights into potential functions within nuclear structure. For example, millions of small tandem major satellite repeats can form bodies that sequester nuclear factors, or the segmental organization of interspersed repeats may underpin the nuclear compartmentalization of heterochromatin and euchromatin. Decoding the vast repeatome is an exciting frontier being enabled by recent technological advancements. However, identifying the extent of meaningful information in repeats will likely require concepts that go well beyond impacts for individual genes, to new ways to identify and interpret broad patterns of genome-wide organization and nucleus-wide regulation.

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev-genom-111522-014017DOI Listing

Publication Analysis

Top Keywords

repeat genome
8
nuclear structure
8
human karyotype
8
potential functions
8
interspersed repeats
8
interspersed nuclear
8
nuclear elements
8
nuclear
6
interspersed
5
repeats
5

Similar Publications

Background: Between November 2023 and March 2024, coastal Kenya experienced another wave of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections detected through our continued genomic surveillance. Herein, we report the clinical and genomic epidemiology of SARS-CoV-2 infections from 179 individuals (a total of 185 positive samples) residing in the Kilifi Health and Demographic Surveillance System (KHDSS) area (~ 900 km).

Methods: We analyzed genetic, clinical, and epidemiological data from SARS-CoV-2 positive cases across pediatric inpatient, health facility outpatient, and homestead community surveillance platforms.

View Article and Find Full Text PDF

In the presence of chromatin bridges in cytokinesis, human cells retain actin-rich structures (actin patches) at the base of the intercellular canal to prevent chromosome breakage. Here, we show that daughter nuclei connected by chromatin bridges are under mechanical tension that requires interaction of the nuclear membrane Sun1/2-Nesprin-2 Linker of Nucleoskeleton and Cytoskeleton (LINC) complex with the actin cytoskeleton, and an intact nuclear lamina. This nuclear tension promotes accumulation of Sun1/2-Nesprin-2 proteins at the base of chromatin bridges and local enrichment of the RhoA-activator PDZ RhoGEF through PDZ-binding to cytoplasmic Nesprin-2 spectrin repeats.

View Article and Find Full Text PDF

The flexibility of the spatio-temporal genome replication program during development and disease highlights the regulatory role of plastic epigenetic mechanisms over genetic determinants. Histone post-translational modifications are broadly implicated in replication timing control, yet the specific mechanisms through which individual histone marks influence replication dynamics, particularly in heterochromatin, remain unclear. Here, we demonstrate that H3K36me3 dynamically enriches at pericentromeric heterochromatin, composed of major satellite DNA repeats, prior to replication during mid S phase in mouse embryonic stem cells.

View Article and Find Full Text PDF

Several genes in the mitochondria of angiosperms are interrupted by introns, and their posttranscriptional excision involves numerous nucleus-encoded auxiliary factors. Most of these factors are of eukaryotic origin, among them members of the pentatricopeptide-repeat (PPR) family of RNA-binding proteins. This family divides into the PLS and P classes, with PLS-class proteins typically participating in C-to-U mRNA editing and P-class members contributing to transcript stabilization and intron splicing.

View Article and Find Full Text PDF

sp. nov. and sp. nov., isolated from forest soil in Ireland.

Int J Syst Evol Microbiol

September 2025

School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.

Two yeast strains, PYCC 10015 and PYCC 10016, were isolated from soil from an Irish forest. Sequence analysis of the internal transcribed spacer (ITS) region (ITS1-5.8S-ITS2) of the rRNA gene repeat, and the D1/D2 domain of the LSU rRNA gene, showed that they belong to the and genera of the order , but they did not exactly match any known species.

View Article and Find Full Text PDF