A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Self-Thermoregulating Polymer Electrolytes Enabling Intrinsic Safety in High-Energy Lithium Metal Batteries. | LitMetric

Self-Thermoregulating Polymer Electrolytes Enabling Intrinsic Safety in High-Energy Lithium Metal Batteries.

Small

School of Materials Science and Engineering, State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Technology Innovation Center of High Performance Resin Materials (Liaoning Province), Dalian University of Technology, Dalian, 116024, Chin

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The pursuit of safe lithium metal batteries (LMBs) with ultrahigh energy density is fundamentally challenged by thermal runaway risks. This study proposes a thermal management strategy through the rational design of a multifunctional gel polymer electrolyte (PPW@GPE). By engineering phase change materials (paraffin wax) within flame-retardant PPBES copolymer matrices via coaxial electrospinning, a self-regulating separator with a dual-phase thermal response is constructed. Subsequent in situ polymerization immobilizes liquid electrolytes into a 3D crosslinked network, achieving simultaneous temperature modulation and ionic conduction optimization. The electrolyte can achieve a uniform hotspot, improve the electrochemical performance and safety of the battery, restrain hotspots, and mitigate temperature rise. In addition, PPW@GPE has excellent flame retardant properties and effectively forms the stabilized carbon layer at high temperatures, effectively protecting battery safety. This Li/PPW@GPE/LFP cell has excellent cycling performance, maintaining 500 stable cycles at 0.2C with only 0.0596% degradation per cycle. In addition, the fluorine-containing monomer helps to form a stable SEI layer and inhibits the growth of lithium dendrites. Through intelligent detection and Comsol simulation, the safety effectiveness of the battery under localized hot spots and external penetration nailing conditions is verified, which provides a new idea for the battery thermal management system.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202503672DOI Listing

Publication Analysis

Top Keywords

lithium metal
8
metal batteries
8
thermal management
8
self-thermoregulating polymer
4
polymer electrolytes
4
electrolytes enabling
4
enabling intrinsic
4
safety
4
intrinsic safety
4
safety high-energy
4

Similar Publications