Developing tools for learning immunology using diffusion-based salt precipitation assays: A low-cost alternative for college laboratories.

Biochem Mol Biol Educ

UM-DAE Centre for Excellence in Basic Sciences, School of Biological Sciences, University of Mumbai Kalina Campus, Mumbai, India.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The Ouchterlony double immunodiffusion technique is used as a teaching tool for studying immune responses and exemplifying differences in antigen-antibody reactions. Although commonplace in undergraduate labs, standardized commercial kits limit learning experiences because they have fixed modalities of use, a low shelf-life, and impose budgetary constraints in the long-term, collectively posing an economic challenge. To mitigate these problems, this study attempts to simulate various types of 'antigen-antibody' reactions using combinations of Mg, Mn, Cu and Ag salts that form a precipitate with BaSO. Using an optimized format of thin agar plates, different salts precipitation reactions were monitored over a time course of "immunodiffusion". These reactions were demonstrably versatile towards simulating (i) quantitation of differential titer among antibodies, (ii) determining serological-identity versus non-identity, (iii) quantitative demonstration of the prozone phenomenon, and finally; (iv) using double precipitin reactions to simulate combinations of antibodies in the same sample. As part of a laboratory exercise, these parameters were used to design an open-ended query aimed to check the effectiveness of student engagement and learning outcomes. Undergraduate students were able to conduct the experiment in a shorter time frame, and interpreted their observations in a multidimensional manner. This allowed teachers to add to the discussion leading to an efficient model of collaborative learning. The salt-precipitation format of "immunodiffusion" is thus not only economical and quick, but allows for flexibility to simulate problems that are of immediate relevance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12290245PMC
http://dx.doi.org/10.1002/bmb.21900DOI Listing

Publication Analysis

Top Keywords

reactions
5
developing tools
4
learning
4
tools learning
4
learning immunology
4
immunology diffusion-based
4
diffusion-based salt
4
salt precipitation
4
precipitation assays
4
assays low-cost
4

Similar Publications

The generation of reactive oxygen species (ROS) through nanozyme-mediated sonocatalytic therapy has demonstrated remarkable therapeutic efficacy in the field of cancer. Nevertheless, it remains a significant challenge for nanozymes with a single catalytic active center to generate sufficient ROS via Fenton or Fenton-like reactions to effectively induce tumor cell death. In order to enhance the catalytic efficacy, we devised and synthesized a multiple active centre and mitochondrial-targeted perovskite nanozyme (NCFP), doped with cobalt (Co) element, and incorporated 4-carboxybutyltriphenylphosphonium bromide (TPP) as a mitochondrial targeting marker for ultrasound (US)-assisted enzyme-like catalytic treatment of tumors.

View Article and Find Full Text PDF

Ultra-High Zinc Utilization Enabled by MXene Anode for Flexible Dual-Plating Zn-Br Microbatteries.

J Phys Chem Lett

September 2025

College of Materials Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, P. R. China.

Aqueous zinc-ion microbatteries exhibit promising prospects for wearable devices due to their high safety and cost-effectiveness but face challenges such as low energy density and short cycle life. To address these challenges, a dual-plating flexible Zn-Br microbattery was developed using freestanding MXene films as a zinc metal free anode. The MXene anode retains no redundant Zn, as Zn from the electrolyte undergoes deposition/stripping reactions on its substrate, thereby eliminating the necessity for excess zinc.

View Article and Find Full Text PDF

The development of anode materials for lithium-ion batteries must meet the demands for high safety, high energy density, and fast-charging performance. TiNbO is notable for its high theoretical specific capacity, low structural strain, and exceptional fast-charging capability, attributed to its Wadsley-Roth crystal structure. However, its inherently poor conductivity has hindered its practical application.

View Article and Find Full Text PDF

Designing Buchwald-Hartwig Reaction Graph for Yield Prediction.

J Org Chem

September 2025

State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, P. R. China.

The Buchwald-Hartwig (B-H) reaction graph, a novel graph for deep learning models, is designed to simulate the interactions among multiple chemical components in the B-H reaction by representing each reactant as an individual node within a custom-designed reaction graph, thereby capturing both single-molecule and intermolecular relationship features. Trained on a high-throughput B-H reaction data set, B-H Reaction Graph Neural Network (BH-RGNN) achieves near-state-of-the-art performance with an score of 0.971 while maintaining low computational costs.

View Article and Find Full Text PDF

Potassium Hydroxide as a Cost-Effective Catalyst for Broad-Scope Silylation with TMSCF.

J Org Chem

September 2025

Faculty of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego St. 8, 61-614 Poznań, Poland; https://www.kucinskilab.com.

The development of efficient and broadly applicable silylation methodologies remains a central goal in synthetic organic and organosilicon chemistry. Traditionally, silylation reactions employ chlorosilanes or hydrosilanes, often necessitating the use of moisture-sensitive and corrosive reagents. Herein, we report a high-yielding, operationally simple, rapid, and economical silylation platform based on trifluoromethyltrimethylsilane (TMSCF) and catalytic potassium hydroxide (KOH).

View Article and Find Full Text PDF