Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Previous studies have suggested that pathological α-synuclein (α-Syn) mainly transmits along the neuronal network, but several key questions remain unanswered: 1) How many and which connections in the connectome are necessary for predicting the progression of pathological α-Syn? 2) How to identify risk genes that affect pathology spreading functioning at presynaptic or postsynaptic regions, and are these genes enriched in different cell types? Here, these questions are addressed with novel mathematical models. Strikingly, the spreading of pathological α-Syn is predominantly determined by the key subnetworks composed of only 2% of the strongest connections in the connectome. Genes associated with the selective vulnerability of brain regions to pathological α-Syn transmission are further analyzed to distinguish those functioning at presynaptic versus postsynaptic regions. Those risk genes are significantly enriched in microglial cells of presynaptic regions and neurons of postsynaptic regions. Gene regulatory network analyses are then conducted to identify "key drivers" of genes responsible for selective vulnerability and overlapping with Parkinson's disease risk genes. By identifying and discriminating between key gene mediators of transmission operating at presynaptic and postsynaptic regions, this study has demonstrated for the first time that these are functionally distinct processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12224943PMC
http://dx.doi.org/10.1002/advs.202413052DOI Listing

Publication Analysis

Top Keywords

risk genes
16
postsynaptic regions
16
pathological α-synuclein
8
connections connectome
8
functioning presynaptic
8
presynaptic postsynaptic
8
genes enriched
8
pathological α-syn
8
selective vulnerability
8
genes
7

Similar Publications

Background: Active vitamin D metabolites, including 25-hydroxyvitamin D (25D) and 1,25-dihydroxyvitamin D (1,25D), have potent immunomodulatory effects that attenuate acute kidney injury (AKI) in animal models.

Methods: We conducted a phase 2, randomized, double-blind, multiple-dose, 3-arm clinical trial comparing oral calcifediol (25D), calcitriol (1,25D), and placebo among 150 critically ill adult patients at high-risk of moderate-to-severe AKI. The primary endpoint was a hierarchical composite of death, kidney replacement therapy (KRT), and kidney injury (baseline-adjusted mean change in serum creatinine), each assessed within 7 days following enrollment using a rank-based procedure.

View Article and Find Full Text PDF

Background: This study aims to gain further insights into the characteristics of the rare subtype of acute myeloid leukemia (AML) with BCR∷ABL by analyzing laboratory detection results of various gene mutations, such as NPM1.

Methods: Laboratory detection results of multiple gene missense mutations, including NPM1, were analyzed in a case of primary AML with BCR∷ABL.

Results: The patient exhibited morphological features of acute leukemia in the bone marrow.

View Article and Find Full Text PDF

Systematic Exploration of Potential Druggable Genes for Ischemic Stroke Employing Genome-Wide Mendelian Randomization Analysis.

Brain Behav

September 2025

Department of Thoracic Surgery II, Department of Lung Transplantation, Organ Transplantation Center, the First Hospital of Jilin University, Changchun, China.

Background: Ischemic stroke (IS) treatment remains a significant challenge. This study aimed to identify potential druggable genes for IS using a systematic druggable genome-wide Mendelian Randomization (MR) analysis.

Methods: Two-sample MR analysis was conducted to identify the causal association between potential druggable genes and IS.

View Article and Find Full Text PDF

Objective: The key molecular events signifying the -induced gastric carcinogenesis process are largely unknown.

Methods: Bulk tissue-proteomics profiling were leveraged across multi-stage gastric lesions from Linqu ( = 166) and Beijing sets ( = 99) and single-cell transcriptomic profiling ( = 18) to decipher key molecular signatures of -related gastric lesion progression and gastric cancer (GC) development. The association of key proteins association with gastric lesion progression and GC development were prospectively studied building on follow-up of the Linqu set and UK Biobank ( = 48,529).

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is a complex, heterogeneous disease characterized by frequent relapses and metastasis. Previous studies have reported that the invasion and progression of CRC in several cases can be controlled by targeting fusion genes. This study aimed to screen for potent fusion transcripts as potential molecular biomarkers and therapeutic targets for metastatic CRC (mCRC) using an approach.

View Article and Find Full Text PDF