98%
921
2 minutes
20
Engineered bacteria have demonstrated great potential for treating a broad array of tumors. However, the precision and safety of controlling the performance of engineered bacteria in vivo remains a central challenge. Here, genetic circuit programming strategy is utilized to construct an engineered Escherichia coli Nissle 1917 with accurate targeted colonizing and on-demand payloads releasing ability. The engineered probiotic survives only in the presence of more than 5 mM L-lactate by employing an improved lactate-sensing system, which leads to preventing the growth outside the permissive environments in mice. Meanwhile an expressing α-hemolysin (SAH) circuit based on quorum-sensing system is introduced to augment anti-tumor effect. Furthermore, coagulase (Coa) induced by high-level lactate creates the closure to deprive tumor of nutrients and oxygen and may help prevent the leakage of bacteria and SAH, which enhances the therapeutic effectiveness and biosafety. This self-adjusting living biotherapeutics significantly inhibits tumor proliferation and prolongs the survival time of colorectal tumor-bearing mice. Together, this work takes a step toward safer and more effective application of living bacteria for tumor treatment in practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12376540 | PMC |
http://dx.doi.org/10.1002/advs.202406486 | DOI Listing |
Eur J Pharm Biopharm
September 2025
Technische Universität Braunschweig, Institute for Particle Technology, Volkmaroder Straße 5, 38104 Braunschweig, Germany; Technische Universität Braunschweig, Center of Pharmaceutical Engineering, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany.
In order to be able to administer efficient probiotic formulations, it is necessary to process the respective microorganisms gently into suitable dosage forms such as tablets maintaining their viability. In previous studies, the process chain consisting of fluidized bed granulation for life-sustaining drying of Saccharomyces cerevisiae as well as subsequent processing into tablets was investigated. Granules based on dicalcium phosphate (DCP), lactose (LAC) and microcrystalline cellulose (MCC) as carrier materials were produced and tableted, and physical-mechanical as well as microbiological tablet properties were evaluated.
View Article and Find Full Text PDFFood Res Int
November 2025
Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China. Electronic ad
In this study, we produced instant dark tea (IDT) by liquid-state fermentation of Ziyang selenium-enriched summer-autumn tea leaves utilizing Eurotium cristatum. Then, the novel mechanism of IDT against obesity was investigated. Our results for the first time revealed that IDT could alleviate obesity by regulating the gut microbiota and promoting adipose thermogenesis.
View Article and Find Full Text PDFFood Res Int
November 2025
Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates. Electronic address:
Limosilactobacillus reuteri probiotics were encapsulated in Kudzu starch (KS) and Hemp protein (HP) complex coacervates (CC), followed by spray drying, to enhance their stability and boost their viability. The optimized conditions for CC consisted of a KS:HP ratio of 1:2 (w/w) and pH 5.0.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
Department of Chemistry and Chemical Engineering, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, C
This study develops a catalytic system using pyruvic acid (PYA) and Fe to efficiently coproduce xylo-oligosaccharides (XOS) and (manno-oligosaccharides) MOS from food material ( Lam. fruit.) and its waste peel, respectively.
View Article and Find Full Text PDFMicrobiol Resour Announc
September 2025
Department of Genomics and Bioinformatics, Faculty of Biotechnology and Genetic Engineering, Chattogram Veterinary and Animal Sciences University (CVASU), Chattogram, Bangladesh.
This research evaluated the gut microbiota of Rohu fish from the Halda River and Kaptai Lake in Bangladesh by 16S rRNA sequencing. Distinct microbial profiles were identified, with Halda samples concentrated in pathogens and Kaptai samples abundant in probiotics.
View Article and Find Full Text PDF