98%
921
2 minutes
20
Germline heterozygous variants in lead to Familial Platelet Disorder with Myeloid Leukemia Predisposition (FPD/AML). Cellular and/or animal models are helpful to uncovering the role of a variant in disease progression. Twenty-five mice per genotype (RUNX1, RUNX1, RUNX1), previously generated by CRISPR/Cas9, and nine sub-lethally irradiated mice per genotype were investigated. Peripheral blood (PB), bone marrow (BM), and spleen samples were analyzed by flow cytometry and histopathology. Deregulated genes were analyzed by RNA-seq in BM. An aberrant myeloid Mac1Sca1ckit population in the PB, BM, and spleen of two homozygous and one heterozygous mouse was observed, as well as BM hypercellularity. No Mac1Sca1ckit cells were detected in any RUNX1 mice. Moreover, the spleen of both homozygous mice showed destruction of the white/red pulp and the presence of apoptotic cells. The aberrant population was also detected in four irradiated mice, two heterozygous and two homozygous, in their PB, BM, and spleen. RNA-seq studies showed 698 genes significantly deregulated in the three non-irradiated Mac1Sca1ckit mice vs. six healthy mice, highlighting the alteration of genes involved in apoptosis and DNA repair. These results indicate that the homozygous form of the variant p.Leu43Ser may contribute to the pathogenesis of aberrant cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109519 | PMC |
http://dx.doi.org/10.3390/biom15050708 | DOI Listing |
PLoS Biol
September 2025
Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America.
Tuberculosis (TB) outcomes vary widely, from asymptomatic infection to mortality, yet most animal models do not recapitulate human phenotypic and genotypic variation. The genetically diverse Collaborative Cross mouse panel models distinct facets of TB disease that occur in humans and allows identification of genomic loci underlying clinical outcomes. We previously mapped a TB susceptibility locus on mouse chromosome 2.
View Article and Find Full Text PDFJ Virol
September 2025
National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China.
Swine influenza A virus (swIAV) is an important zoonotic pathogen with the potential to cause human influenza pandemics. Swine are considered "mixing vessels" for generating novel reassortant influenza A viruses. In 2009, a swine-origin reassortant virus (2009 pandemic H1N1, pdm/09 H1N1) spilled over to humans, causing a global influenza pandemic.
View Article and Find Full Text PDFNAR Genom Bioinform
September 2025
DNA Repair and Recombination Laboratory, St Vincent's Institute of Medical Research, Fitzroy VIC 3065, Australia.
Meiotic crossovers promote correct chromosome segregation and the shuffling of genetic diversity. However, the measurement of crossovers remains challenging, impeding our ability to decipher the molecular mechanisms that are necessary for their formation and regulation. Here we demonstrate a novel repurposing of the single-nucleus Assay for Transposase Accessible Chromatin with sequencing (snATAC-seq) as a simple and high-throughput method to identify and characterize meiotic crossovers from haploid testis nuclei.
View Article and Find Full Text PDFFree Radic Biol Med
September 2025
Department of Cellular and Integrative Physiology, University of Nebraska Medical Center. Electronic address:
Background: Excessive oxidative stress is well known to participate in the pathogenesis of hypertension. A major regulator of oxidative stress is the transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2). However, the role of Nrf2 in the pathogenesis of hypertension is not completely understood, especially at the endothelial cell level.
View Article and Find Full Text PDFBiomed Pharmacother
September 2025
Department of Pharmacology, College of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea. Electronic address:
Alzheimer's disease (AD) is marked by amyloid-beta (Aβ) plaque buildup, tau hyperphosphorylation, neuroinflammation, neuronal loss, and impaired adult hippocampal neurogenesis (AHN). Taurine has shown protective effects in various cellular and animal models of AD, though the molecular mechanisms of free taurine and its effects in patient-derived models remain underexplored. This study evaluates taurine's therapeutic potential using integrated in silico, in vitro, in vivo, and ex vivo approaches.
View Article and Find Full Text PDF