A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Comprehensive Impact of Multiplanar Malalignment on Prosthetic Mechanics Under Gait Loading After Total Knee Arthroplasty-A Finite Element Analysis. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Component alignment is a key factor influencing clinical outcomes after total knee arthroplasty (TKA). Previous studies have shown that single-plane alignment can significantly affect knee joint kinematics and biomechanics. However, the comprehensive impact of multiplanar malalignment has been rarely investigated.

Objective: This study aimed to investigate the influence of the multiplanar malalignment combination on the polyethylene tibial liners under gait loading, a primary activity of daily life, as well as the degree of the influence of the alignments on the different planes.

Method: A validated finite element model of a cruciate-retaining knee prosthesis under gait loading was used in this study. Five alignment parameters (-5°, -3°, 0°, 3°, 5°) on each plane (coronal, sagittal, and transverse) were selected to simulate clinical alignment errors, resulting in 125 models combining various alignment errors across the three planes. Boundary and loading conditions were set according to ISO 14243-3:2014. The maximum von Mises stress and contact stress during a gait cycle were recorded for statistical analysis. A polynomial model was used for regression analysis, with the degree of influence of each alignment error on von Mises and contact stress determined by examining the quadratic coefficients.

Results: The highest Mises and contact stress values occurred with alignment errors of 5° varus, 5° flexion, and 5° internal rotation on the coronal, sagittal, and transverse planes, respectively. The lowest stress values were observed with a combination of 3° valgus, 5° flexion, and 0° internal rotation. The regression analysis yielded an R value of 0.69 between alignment errors and Mises stress, with quadratic coefficients of 0.096, 0.013, and 0.064 for the coronal, sagittal, and transverse alignments, respectively. For contact stress, the R was 0.697, with quadratic coefficients of 0.083, 0.002, and 0.026 for the coronal, sagittal, and transverse alignments, respectively.

Conclusion: The coronal alignment of the lower limb has the most significant impact on both Mises stress and contact stress of the tibial liner, followed by the rotational alignment of the tibial component. In contrast, the sagittal alignment of the femoral component has the least influence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12214403PMC
http://dx.doi.org/10.1111/os.70068DOI Listing

Publication Analysis

Top Keywords

contact stress
20
coronal sagittal
16
sagittal transverse
16
alignment errors
16
multiplanar malalignment
12
gait loading
12
mises stress
12
alignment
11
stress
9
comprehensive impact
8

Similar Publications