Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In vitro maturation (IVM) is a very important technology for the modernization of animal husbandry. Previous studies have demonstrated that the mitochondria-targeting antioxidant mitoquinone mesylate (MitoQ) was known for its protective role in a variety of tissues and cells; however, its function in Tibetan sheep oocytes is not fully understood. This study used a Tibetan sheep model to evaluate the effects of oocytes exposed to MitoQ on maturation and subsequent embryonic development. During IVM, cumulus-oocyte-complexes were exposed to 0-400 nM MitoQ to evaluate the viability of cumulus cells expansion and oocyte maturation, and determine the optimal concentration of 100 nM. Here, we discovered that 100 nM MitoQ addition to the medium improved the Tibetan sheep oocyte maturation rate (P < 0.05) and cumulus cells expansion rate (P > 0.05). In addition, immunostaining showed that decreased ROS levels (P < 0.01), increased GSH levels (P < 0.01). MitoQ-treated oocytes showed enhanced mitochondrial activity (P < 0.01) and mitochondrial membrane potential (P < 0.05). MitoQ increased Ca levels (P < 0.01) and attenuated early apoptosis (P < 0.01). No differences were observed for cleavage rate (P > 0.05), and improved number of blastocyst cells and the blastocyst rate (P < 0.05) after in vitro fertilization. Moreover, various genes associated with oocyte oxidative stress (GCLC, SOD1) in mature oocytes were beneficially regulated in the MitoQ-treated oocytes. In conclusion, MitoQ can enhance the oocyte maturation rate, improve subsequent embryonic development in Tibetan sheep.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.anireprosci.2025.107856DOI Listing

Publication Analysis

Top Keywords

tibetan sheep
16
oocyte maturation
12
mitoquinone mesylate
8
maturation subsequent
8
subsequent embryonic
8
embryonic development
8
maturation
5
mesylate promotes
4
promotes oocyte
4
development regulating
4

Similar Publications

Background: India's indigenous sheep breeds have evolved under extreme and diverse agro-ecological pressures, yet the genomic basis of their resilience and local adaptation remains poorly understood.

Method: This study combines genomic inbreeding estimates, runs of homozygosity (ROH), population structure analyses, and composite selection scans to investigate three native Indian breeds-Changthangi, Deccani, and Garole-within a panel of nine breeds that also includes populations from Africa (Ethiopian Menz), East and South Asia (Tibetan, Chinese Merino, Bangladesh Garole, Bangladesh East), and Europe (Suffolk).

Results: ROH and heterozygosity estimates revealed strong contrasts: Bangladesh East sheep exhibited high genomic inbreeding (F≈14.

View Article and Find Full Text PDF

Grazing system and body weight of Tibetan sheep influence biomass allocation and decomposition in alpine meadows.

J Environ Manage

September 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China,

Grazing affects the allocation of aboveground biomass (AGB), and decomposition of litter and dung, thereby regulating material flow in grassland ecosystems. However, the combined effects of grazing system (GS) and body weight (BW) on biomass allocation remain unclear. This study had conducted a two-year experiment in an alpine meadow of Qinghai-Tibetan Plateau (QTP), in order to examine the effects of two GS (continuous grazing - CG, and rotational grazing - RG) and three BWs of Tibetan sheep (23.

View Article and Find Full Text PDF

Genome-wide selection signal analysis reveals the adaptability of Tibetan sheep to high altitudes.

Front Vet Sci

August 2025

Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.

Altitude adaptation is a complex process involving multiple physiological and biochemical responses to hypoxia and other environmental stresses. In-depth genetic analysis of Tibetan sheep, which exhibit significant adaptations to high-altitude hypoxia, promises to elucidate hypoxia-tolerance mechanisms in plateau animals. Here, we conducted a genome-wide selection scan on three Tibetan sheep populations: low-altitude Tao (TS; 2887 m), medium-altitude Tianjun white (WT; 3331 m), and high-altitude Huoerba (HB; 4614 m).

View Article and Find Full Text PDF

Background: As an indigenous livestock species on the Tibetan Plateau, Tibetan sheep exhibit remarkable adaptability to low temperatures and nutrient-scarce environments. During the cold season, Tibetan sheep are typically managed under two feeding regimes: barn feeding (BF) and traditional grazing (TG). However, the molecular mechanisms underlying their adaptation to these distinct management strategies remain unclear.

View Article and Find Full Text PDF

: Complete environmental adaptation requires both survival and reproductive success. The hypoxic Qinghai-Tibet Plateau (>3000 m) challenges reproduction in indigenous species. Tibetan sheep, a key plateau-adapted breed, possess remarkable hypoxic tolerance, yet the genetic basis of their reproductive success remains poorly understood.

View Article and Find Full Text PDF