Scaling up eco-engineering: The role of topographic complexity and spatial variability in shaping biodiversity on coastal structures.

Sci Total Environ

School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom; School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork, Ireland.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In response to the depauperate biodiversity often associated with the largely homogenous surfaces of artificial structures, ecological (eco-) engineering has emerged as a tool to introduce topographic complexity to coastal development. Although relatively small-scale studies using topographically complex panels and artificial rockpools are commonplace, determining how the configuration of these interventions works over greater and more realistic spatial scales has received comparatively little attention. Given the importance of spatial variability in habitat complexity for shaping community composition and, therefore, regional diversity, filling this knowledge gap is key to enhancing the 'design catalogue' for future eco-engineering installations. Here, we manipulated topographic complexity using individual concrete panels placed into larger arrays to generate two different spatial configurations, and in doing so explore the potentially interactive roles of small-scale panel complexity and larger-scale variability on biodiversity. More topographically complex panels supported greater taxon richness and abundance than low complexity panels, whilst the complexity of the panels in interaction with their spatial arrangement within larger arrays influenced community composition between treatment groups. Our results corroborate studies showing how small-scale variation in surface topography benefits biodiversity, but we also demonstrate that spatial variability in how this complexity is deployed over larger areas impacts community composition. These effects were especially evident for the invasive non-native species that frequently colonise and dominate newly engineered coastal structures, often at the expense of natives. Given the ongoing expansion of coastal infrastructure, studies such as this that explore means of 'scaling up' eco-engineering to better represent the inherent spatial variability of natural habitats are essential to achieving biodiversity comparable to, and potentially greater than, these habitats.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2025.179738DOI Listing

Publication Analysis

Top Keywords

spatial variability
16
topographic complexity
12
community composition
12
complexity
8
coastal structures
8
topographically complex
8
complex panels
8
larger arrays
8
complexity panels
8
spatial
7

Similar Publications

Distribution and Risk Factors of Scrub Typhus in South Korea, From 2013 to 2019: Bayesian Spatiotemporal Analysis.

JMIR Public Health Surveill

September 2025

Department of Preventive Medicine, College of Medicine, Korea University, 73 Goryeodae-ro, Seoungbuk-gu, Seoul, 02841, Republic of Korea, 82 2-2286-1169.

Background: Scrub typhus (ST), also known as tsutsugamushi disease, is a common febrile vector-borne illness in South Korea, transmitted by trombiculid mites infected with Orientia tsutsugamushi, with rodents serving as the main hosts. Although vector-borne diseases like ST require both a One Health approach and a spatiotemporal perspective to fully understand their complex dynamics, previous studies have often lacked integrated analyses that simultaneously address disease dynamics, vectors, and environmental shifts.

Objective: We aimed to explore spatiotemporal trends, high-risk areas, and risk factors of ST by simultaneously incorporating host and environmental information.

View Article and Find Full Text PDF

Population-based studies related to pre-eclampsia are scarce. The aim was to analyze the spatial and temporal distribution of deaths due to pre-eclampsia in Brazil from 2009 to 2020, characterizing the sociodemographic profile, distribution pattern, and presence of spatio-temporal clusters. It involved an ecological, population-based study using the Brazilian territory as the unit of analysis.

View Article and Find Full Text PDF

Epilepsy, a highly individualized neurological disorder, affects millions globally. Electroencephalography (EEG) remains the cornerstone for seizure diagnosis, yet manual interpretation is labor-intensive and often unreliable due to the complexity of multi-channel, high-dimensional data. Traditional machine learning models often struggle with overfitting and fail in fully capturing the highdimensional, temporal dynamics of EEG signals, restricting their clinical utility.

View Article and Find Full Text PDF

The size and composition of local species pools are, in part, determined by past dispersal events. Predicting how communities respond to future disturbances, such as fluctuating environmental conditions, requires knowledge of such histories. We assessed the influence of a historical dispersal event on community assembly by simulating various scales of dispersal for 240 serpentine annual plant communities that experienced a large shift from drought to high rainfall conditions over three years.

View Article and Find Full Text PDF

Marine ecosystems, particularly estuaries, are increasingly threatened by anthropogenic pressures. The Odiel Estuary has suffered severe contamination from acid mine drainage and industrial activities. Since 1986, mitigation efforts have been implemented, yet their long-term ecological effectiveness remains under-evaluated.

View Article and Find Full Text PDF