Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pexidartinib is a regulatory agency approved small molecule kinase inhibitor (KI) with a boxed warning for hepatotoxicity, and FDA requires a Risk Evaluation and Mitigation Strategy (REMS) to mitigate such risk. The mechanism of pexidartinib hepatotoxicity is poorly understood. As mitochondrial injury and hepatocyte toxicity have been proposed to be a shared mechanism for the hepatotoxicity induced by many KIs, here we examined pexidartinib for such liabilities. Freshly isolated rat liver mitochondria, submitochondrial fractions, and cryopreserved primary human hepatocytes (PHHs) - the gold standard in vitro model for drug hepatotoxicity - were treated with pexidartinib at clinically relevant concentrations, and mitochondrial functions and cytotoxicity were assessed. In isolated mitochondria, the state 3 oxygen consumption rates of glutamate/malate- and succinate-driven respiration were both decreased by pexidartinib, while the state 4 oxygen consumption rates were unaffected. In submitochondrial fractions, the activities of respiratory chain complex (RCC) I and V, but not II, III, IV, were significantly inhibited by pexidartinib. In PHHs, as measured by a Seahorse system, pexidartinib decreased basal, spare, maximal, and adenosine triphosphate (ATP)-linked respirations at 2 h in the absence of cell death. Pexidartinib also inhibited cellular ATP level, increased reactive oxygen species, and caused cell death after 24 h. However, activities of caspases were unaffected. Importantly, the detrimental effects noted above occurred at pexidartinib concentrations of 0.5- to 2.5-fold of the human peak blood concentration (C) achieved with the recommended therapeutic dose. These data suggest that mitochondrial injury and hepatocyte toxicity are involved in the mechanism of pexidartinib-induced hepatotoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2025.152075DOI Listing

Publication Analysis

Top Keywords

cell death
12
pexidartinib
10
mitochondrial functions
8
primary human
8
human hepatocytes
8
clinically relevant
8
relevant concentrations
8
mitochondrial injury
8
injury hepatocyte
8
hepatocyte toxicity
8

Similar Publications

Epilepsy is a common chronic nervous system disease that threatens human health. However, the role of FOXC1 and its relations with pyroptosis have not been fully studied in epilepsy. Sprague-Dawley rats were obtained for constructing temporal lobe epilepsy (TLE) models.

View Article and Find Full Text PDF

Despite significant advancements in the treatment of non-small cell lung cancer (NSCLC) using conventional therapeutic methods, drug resistance remains a major factor contributing to disease recurrence. In this study, we aimed to explore the potential benefits of combining PI3K inhibition with Cisplatin in the context of NSCLC-derived A549 cells. Human non-small cell lung cancer A549 cells were cultured and treated with BKM120, cisplatin, or their combination.

View Article and Find Full Text PDF

Hypoxia Aggravates Myocardial Ischemia/Reperfusion Injury Through the Promotion of Ferroptosis via ACSL4 Lactylation.

J Cardiovasc Transl Res

September 2025

Department of Cardiology, Bei'an Hospital, Beidahuang Group, Heihe, 164000, Heilongjiang Province, China.

Myocardial ischemia/reperfusion injury (MIRI) worsens ischemic damage, with ferroptosis as a key mediator of this iron-dependent cell death. Lactylation, a novel epigenetic modification, remains poorly understood in MIRI-associated ferroptosis. This study aimed to elucidate the mechanistic link between lactylation and ferroptosis in MIRI.

View Article and Find Full Text PDF

Background: Standard treatment for glioblastoma includes chemotherapy, alkylating agents such as temozolomide (TMZ); however, MGMT resistance leads to recurrence. Demethoxycurcumin (DMC) has been reported to inhibit cancer cell growth, induce apoptosis, and prevent metastasis in different cancer models. We investigated the DMC-induced apoptosis and autophagy via inhibition of the AKT/mTOR pathway in human glioma U87MG and T98G cell lines.

View Article and Find Full Text PDF

Oxidative stress induces a wide range of cellular damage, often causing disease and cell death. While many organisms are susceptible to the effects of oxidative stress, haloarchaea have adapted to be highly resistant. Several aspects of the haloarchaeal oxidative stress response have been characterized; however, little is known about the impacts of oxidative stress at the translation level.

View Article and Find Full Text PDF