98%
921
2 minutes
20
Pexidartinib is a regulatory agency approved small molecule kinase inhibitor (KI) with a boxed warning for hepatotoxicity, and FDA requires a Risk Evaluation and Mitigation Strategy (REMS) to mitigate such risk. The mechanism of pexidartinib hepatotoxicity is poorly understood. As mitochondrial injury and hepatocyte toxicity have been proposed to be a shared mechanism for the hepatotoxicity induced by many KIs, here we examined pexidartinib for such liabilities. Freshly isolated rat liver mitochondria, submitochondrial fractions, and cryopreserved primary human hepatocytes (PHHs) - the gold standard in vitro model for drug hepatotoxicity - were treated with pexidartinib at clinically relevant concentrations, and mitochondrial functions and cytotoxicity were assessed. In isolated mitochondria, the state 3 oxygen consumption rates of glutamate/malate- and succinate-driven respiration were both decreased by pexidartinib, while the state 4 oxygen consumption rates were unaffected. In submitochondrial fractions, the activities of respiratory chain complex (RCC) I and V, but not II, III, IV, were significantly inhibited by pexidartinib. In PHHs, as measured by a Seahorse system, pexidartinib decreased basal, spare, maximal, and adenosine triphosphate (ATP)-linked respirations at 2 h in the absence of cell death. Pexidartinib also inhibited cellular ATP level, increased reactive oxygen species, and caused cell death after 24 h. However, activities of caspases were unaffected. Importantly, the detrimental effects noted above occurred at pexidartinib concentrations of 0.5- to 2.5-fold of the human peak blood concentration (C) achieved with the recommended therapeutic dose. These data suggest that mitochondrial injury and hepatocyte toxicity are involved in the mechanism of pexidartinib-induced hepatotoxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2025.152075 | DOI Listing |
FASEB J
September 2025
Department of Hematology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China.
Epilepsy is a common chronic nervous system disease that threatens human health. However, the role of FOXC1 and its relations with pyroptosis have not been fully studied in epilepsy. Sprague-Dawley rats were obtained for constructing temporal lobe epilepsy (TLE) models.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
September 2025
Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Despite significant advancements in the treatment of non-small cell lung cancer (NSCLC) using conventional therapeutic methods, drug resistance remains a major factor contributing to disease recurrence. In this study, we aimed to explore the potential benefits of combining PI3K inhibition with Cisplatin in the context of NSCLC-derived A549 cells. Human non-small cell lung cancer A549 cells were cultured and treated with BKM120, cisplatin, or their combination.
View Article and Find Full Text PDFJ Cardiovasc Transl Res
September 2025
Department of Cardiology, Bei'an Hospital, Beidahuang Group, Heihe, 164000, Heilongjiang Province, China.
Myocardial ischemia/reperfusion injury (MIRI) worsens ischemic damage, with ferroptosis as a key mediator of this iron-dependent cell death. Lactylation, a novel epigenetic modification, remains poorly understood in MIRI-associated ferroptosis. This study aimed to elucidate the mechanistic link between lactylation and ferroptosis in MIRI.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Dr. B. R. Ambedkar Centre for Biomedical Research North Campus , University of Delhi, 110007, Delhi, India.
Background: Standard treatment for glioblastoma includes chemotherapy, alkylating agents such as temozolomide (TMZ); however, MGMT resistance leads to recurrence. Demethoxycurcumin (DMC) has been reported to inhibit cancer cell growth, induce apoptosis, and prevent metastasis in different cancer models. We investigated the DMC-induced apoptosis and autophagy via inhibition of the AKT/mTOR pathway in human glioma U87MG and T98G cell lines.
View Article and Find Full Text PDFmSphere
September 2025
Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA.
Oxidative stress induces a wide range of cellular damage, often causing disease and cell death. While many organisms are susceptible to the effects of oxidative stress, haloarchaea have adapted to be highly resistant. Several aspects of the haloarchaeal oxidative stress response have been characterized; however, little is known about the impacts of oxidative stress at the translation level.
View Article and Find Full Text PDF