Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Plants inevitably encounter a diverse array of constantly changing environmental stresses, and drought stands out as one of the most severe threats to plants. Abscisic acid (ABA) and jasmonic acid (JA) work synergistically to increase plant drought tolerance, but their interplay during drought response remains elusive. Here, we uncovered that ABA induced the degradation of a negative transcription regulator, ethylene responsive factor (ERF.D2), in tomato drought tolerance. We identified that ERF.D2 was phosphorylated at Ser-52 by calcium-dependent protein kinase 27 (CPK27) in an ABA-dependent manner and underwent subsequent PUB22-mediated ubiquitination. Degradation of ERF.D2 leads to the increase of the transcript levels of JA biosynthesis genes, allene oxide cyclase (AOC) and 12-oxophytodienoic acid reductase 3 (OPR3), and endogenous concentration of JA, thus enhancing tomato plant drought tolerance. These findings demonstrate a novel insight into the molecular mechanism of ABA-JA synergistic interaction during tomato drought tolerance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12310840PMC
http://dx.doi.org/10.1111/pbi.70157DOI Listing

Publication Analysis

Top Keywords

drought tolerance
20
abscisic acid
8
jasmonic acid
8
plant drought
8
tomato drought
8
drought
7
tolerance
5
acid
5
erfd2
4
erfd2 negatively
4

Similar Publications

Genome-wide identification analysis of aldo-keto reductase gene family in cotton and GhAKR40 role in salt stress tolerance.

Funct Integr Genomics

September 2025

Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Zhengzhou, China.

In this study, a comprehensive genome-wide identification and analysis of the aldo-keto reductase (AKR) gene family was performed to explore the role of Gossypium hirsutumAKR40 under salt stress in cotton. A total of 249 AKR genes were identified with uneven distribution on the chromosomes in four cotton species. The diversity and evolutionary relationship of the cotton AKR gene family was identified using physio-chemical analysis, phylogenetic tree construction, conserved motif analysis, chromosomal localization, prediction of cis-acting elements, and calculation of evolutionary selection pressure under 300 mM NaCl stress.

View Article and Find Full Text PDF

Agriculture is extremely vulnerable to climate change and crop production is severely hampered by climate extremes. Not only does it cost growers over US$170Bln in lost production, but it also has major implications for global food security. In this study, we argue that, under current climate scenarios, agriculture in the 21 century will become saline, severely limiting (or even making impossible) the use of traditional cereal crops for human caloric intake.

View Article and Find Full Text PDF

Correction: CRISPR/Cas9 editing of  enhances drought tolerance in potato (Solanum tuberosum).

Front Plant Sci

August 2025

Laboratorio de Agrobiotecnología, Estación Experimental Agropecuaria (EEA) Balcarce-Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS) Unidad de Estudios Agropecuarios y Desarrollo de la Innovación Tecnológica Agropecuaria (UEDDINTA)-Consejo Nacional de

[This corrects the article DOI: 10.3389/fpls.2025.

View Article and Find Full Text PDF

Just as Gregor Mendel's laws of inheritance laid the foundation for modern genetics, the emergence of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas systems has catalyzed a new era in precision genome engineering. CRISPR/Cas has revolutionized rice ( L.) breeding by enabling precise, transgene-free edits to improve yield, nutrition, and stress tolerance.

View Article and Find Full Text PDF

Nonexpressor of pathogenesis-related genes 1 (NPR1) is a master regulator of salicylic acid (SA)- facilitated plant hormone signaling and plays a crucial role in plant defense through the activation of systemic acquired resistance (SAR). Although like genes are associated with stress responses in a variety of plant species, no thorough genome-wide investigation of these genes has been undertaken in pearl millet (). This study discovered seven -like genes on four pearl millet chromosomes (Chr1, Chr2, Chr4, and Chr6), which exhibit close affinity to NPRs from other plants and have common gene structures, conserved motifs, and domains.

View Article and Find Full Text PDF