Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sepsis-induced acute lung injury (SI-ALI) requires urgent treatment due to severe inflammation. Our study found chlorogenic acid (CGA) suppressed LPS-induced macrophage activation by lowering NO, TNF-α, and IL-6. TPP-based strategies identified SLC37A2 as the direct target of CGA, validated by CETSA/MST. Molecular docking indicated CGA-SLC37A2 hydrogen bonding. CGA alleviated endoplasmic reticulum stress via SLC37A2, inhibiting TLR4/NF-κB and NLRP3 pathways to reduce inflammation. In SI-ALI mice and zebrafish models, CGA mitigated lung injury through these mechanisms taken together. This work highlights the therapeutic potential of CGA for SI-ALI and the critical role of SLC37A2 in combating infectious pneumonia.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10286020.2025.2506181DOI Listing

Publication Analysis

Top Keywords

lung injury
12
chlorogenic acid
8
macrophage activation
8
sepsis-induced acute
8
acute lung
8
cga
5
acid targets
4
slc37a2
4
targets slc37a2
4
slc37a2 inhibit
4

Similar Publications

Introduction: Lactate has emerged as a multifunctional signaling molecule regulating various physiological and pathological processes. Furthermore, lactylation, a newly identified posttranslational modification triggered by lactate accumulation, plays significant roles in human health and diseases. This study aims to investigate the roles of lactate/lactylation in respiratory diseases.

View Article and Find Full Text PDF

Objectives: Elevated intracranial pressure (ICP) is a complication of severe traumatic brain injury (TBI) that carries a risk of secondary brain injury. This study investigated the association between ICP burden and brain injury patterns on MRI in children with severe TBI.

Design, Setting, And Patients: Secondary analysis of the Approaches and Decisions in Acute Pediatric TBI (ADAPT) study, which included children with severe TBI (Glasgow Coma Scale score < 9) who received a clinical MRI within 30 days of injury.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) causes a high level of blood glutamate, which triggers host defense by activating oxidative stress and inflammation response. However, the concrete mechanism underlying its exacerbating effects on acute lung injury (ALI) severity remains unknown. In the present study, we aim to demonstrate the special role of N-methyl-D-aspartate receptor (NMDAR) in regulating glutamate-related inflammation signaling to facilitate the sustaining injury.

View Article and Find Full Text PDF

Mean Airway Pressure-An Informative but Overlooked Indicator of Mechanical Power.

Crit Care Explor

September 2025

Division of Pulmonary, Allergy, Critical Care, and Sleep, University of Minnesota, Minneapolis, MN.

Mean airway pressure, a monitored variable continuously available on the modern ventilator, is the pressure measured at the airway opening averaged over the time needed to complete the entire respiratory cycle. Mean airway pressure is well recognized to connect three key physiologic processes in mechanical ventilation: physical stretch, cardiovascular dynamics, and pulmonary gas exchange. Although other parameters currently employed in adults to determine "safe" ventilation are undoubtedly valuable for daily practice, all have limitations for continuous monitoring of ventilation hazard.

View Article and Find Full Text PDF

Polystyrene particles induces asthma-like Th2-mediated lung injury through IL-33 secretion.

Environ Int

September 2025

Center for Respiratory Safety Research, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do 56212, Republic of Korea; Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon 34113, Republic of Korea. Electronic address:

Plastics, particularly polystyrene (PS), are extensively used worldwide, especially in disposable packaging, which contributes to environmental pollution by generating microplastic particles. Herein, we investigated the pulmonary toxic effects of PS microplastics, focusing on airway inflammation and immune response. PS microplastic (50 nm to 1 μm) exposure was more likely to cause a severe pulmonary inflammatory response, particularly with smaller particle sizes.

View Article and Find Full Text PDF