Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Stem cell therapy holds promise for Parkinson's disease (PD). To identify optimal stem cell regimens in PD mouse models and inform translational research, we conducted a network meta-analysis (NMA). Specifically, we systematically searched for studies on stem cell therapy in PD mouse models up to September 2024 in PubMed, Embase, Scopus, Web of Science, China National Knowledge Infrastructure, WANFANG, and VIP. Based on the data collected, we conducted an NMA using GeMTC-0.14.3 software. The results of traditional meta-analysis of 148 studies demonstrated superior efficacy of most interventions versus controls at biweekly intervals (2-8 weeks post-treatment), with neural stem cells engineered with neurotrophic factors (NSC-NFs) showing the lowest weighted mean difference, indicating optimal therapeutic effect. NMA demonstrated that NF-engineered NSC therapy ranked the highest at biweekly time points (2-8 weeks post-treatment). Doses of 10 cells showed optimal efficacy at 2, 4, and 6 weeks, peaking within this range, whereas doses of 10 cells showed the best efficacy at 8 weeks. Medial forebrain bundle (MFB) administration showed superior efficacy at weeks 2 and 8, while striatum (STR) infusion showed greater therapeutic effects at weeks 4 and 6, with both approaches significantly outperforming nasal and intravenous delivery at all evaluated time points (2, 4, 6, and 8 weeks). Taken together, these results suggest that NSC-NF (dosage of 10) delivered via MFB (at 2 and 8 weeks) or STR (at 4 and 6 weeks) may represent the optimal strategy. It provides important guidance for optimizing preclinical and clinical trial designs and offers valuable insights for clinical translation.

Download full-text PDF

Source
http://dx.doi.org/10.1089/scd.2025.0056DOI Listing

Publication Analysis

Top Keywords

stem cell
16
efficacy weeks
12
weeks
9
network meta-analysis
8
parkinson's disease
8
optimal strategy
8
cell therapy
8
mouse models
8
superior efficacy
8
2-8 weeks
8

Similar Publications

Nebulized Lipid Nanoparticles Deliver mRNA to the Liver for Treatment of Metabolic Diseases.

Nano Lett

September 2025

State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.

An optimal administration approach is critical for effective mRNA delivery and treatment. Nebulizer inhalation offers a mild, convenient, and noninvasive strategy with high translational potential but primarily focused on lung delivery. In this study, we found that surface charges influence tissue targeting of mRNA lipid nanoparticle (mRNA-LNP) postnebulization.

View Article and Find Full Text PDF

In an era of expanding reproductive possibilities, the human embryo has come to represent both immense potential and profound constraint. Advances in medically assisted reproduction (MAR) have led to the cryopreservation of hundreds of thousands of embryos each year, yet many remain unused and are ultimately discarded. Meanwhile, studies aimed at understanding infertility, early human development and preventing miscarriage continue to face significant barriers, with only a small fraction of embryos ever donated to research.

View Article and Find Full Text PDF

Purpose: To evaluate the efficacy and underlying mechanism of advanced optimal pulse technology intense pulsed light (AOPT) in low-energy triple-pulse long-width mode (AOPT-LTL) for melasma treatment.

Methods: An in vivo guinea pig model of melasma was established through progesterone injection and ultraviolet B radiation. Three sessions of AOPT-LTL treatment were performed weekly.

View Article and Find Full Text PDF

Background/aims: Despite medical advances in recent decades, the mortality rate of advanced liver cirrhosis remains high. Although liver transplantation remains the most effective treatment, candidate selection is limited by donor availability and alcohol abstinence requirements. Bone marrow-derived mesenchymal stem cell (BM-MSC) transplantation has shown promise for the treatment of advanced cirrhosis.

View Article and Find Full Text PDF

Functional analysis of secreted tissue inhibitor of metalloproteinases-1 from adult human neural stem cells (ahNSCs) for regeneration and neuroprotection.

BMB Rep

September 2025

Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul 08517; Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419; Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351; Department of Health

The adult human neural stem cell (ahNSC)-conditioned medium (CM) contains various secreted factors that promote tissue repair and neuroprotection. This study aimed to identify the key secreted proteins in ahNSC-CM and investigate the role of tissue inhibitor of metalloproteinases-1 (TIMP-1) in wound healing, angiogenesis, and neuroprotection against oxygenglucose deprivation. Cytokine array and liquid chromatography- tandem mass spectrometry analysis of ahNSC-CM revealed that monocyte chemoattractant protein-1 (MCP-1) and TIMP-1 were highly abundant.

View Article and Find Full Text PDF