98%
921
2 minutes
20
Background: This paper presents a deep learning model for the automated segmentation of cerebral cavernous malformations (CCMs).
Methods: The model was trained using treatment planning data from 199 Gamma Knife (GK) exams, comprising 171 cases with a single CCM and 28 cases with multiple CCMs. The training data included initial MRI images with target CCM regions manually annotated by neurosurgeons. For the extraction of data related to the brain parenchyma, we employed a mask region-based convolutional neural network (Mask R-CNN). Subsequently, this data was processed using a 3D convolutional neural network known as DeepMedic.
Results: The efficacy of the brain parenchyma extraction model was demonstrated via five-fold cross-validation, resulting in an average Dice similarity coefficient of 0.956 ± 0.002. The segmentation models used for CCMs achieved average Dice similarity coefficients of 0.741 ± 0.028 based solely on T2W images. The Dice similarity coefficients for the segmentation of CCMs types were as follows: Zabramski Classification type I (0.743), type II (0.742), and type III (0.740). We also developed a user-friendly graphical user interface to facilitate the use of these models in clinical analysis.
Conclusions: This paper presents a deep learning model for the automated segmentation of CCMs, demonstrating sufficient performance across various Zabramski classifications.
Trial Registration: not applicable.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12107882 | PMC |
http://dx.doi.org/10.1186/s12880-025-01738-6 | DOI Listing |
PLoS One
September 2025
College of Business Administration, Northern Border University (NBU), Arar, Kingdom of Saudi Arabia.
The increasing dependence on cloud computing as a cornerstone of modern technological infrastructures has introduced significant challenges in resource management. Traditional load-balancing techniques often prove inadequate in addressing cloud environments' dynamic and complex nature, resulting in suboptimal resource utilization and heightened operational costs. This paper presents a novel smart load-balancing strategy incorporating advanced techniques to mitigate these limitations.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
September 2025
Force prediction is crucial for functional rehabilitation of the upper limb. Surface electromyography (sEMG) signals play a pivotal role in muscle force studies, but its non-stationarity challenges the reliability of sEMG-driven models. This problem may be alleviated by fusion with electrical impedance myography (EIM), an active sensing technique incorporating tissue morphology information.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
September 2025
In industrial scenarios, semantic segmentation of surface defects is vital for identifying, localizing, and delineating defects. However, new defect types constantly emerge with product iterations or process updates. Existing defect segmentation models lack incremental learning capabilities, and direct fine-tuning (FT) often leads to catastrophic forgetting.
View Article and Find Full Text PDFJMIR Med Inform
September 2025
Department of Radiology, Air Force Medical Center, Air Force Medical University, Fucheng Road 30, Haidian District, Beijing, CN.
Background: Lateral malleolar avulsion fracture (LMAF) and subfibular ossicle (SFO) are distinct entities that both present as small bone fragments near the lateral malleolus on imaging, yet require different treatment strategies. Clinical and radiological differentiation is challenging, which can impede timely and precise management. On imaging, magnetic resonance imaging (MRI) is the diagnostic gold standard for differentiating LMAF from SFO, whereas radiological differentiation on computed tomography (CT) alone is challenging in routine practice.
View Article and Find Full Text PDFMol Divers
September 2025
Information Technology and Computing Applications, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Guntur, India.