TaxaCal: enhancing species-level profiling accuracy of 16S amplicon data.

BMC Bioinformatics

College of Computer Science and Technology, Qingdao University, Qingdao, 266071, Shandong, China.

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: 16S rRNA amplicon sequencing is a widely used method for microbiome composition analysis due to its cost-effectiveness and lower data requirements compared to metagenomic whole-genome sequencing (WGS). However, inherent limitations in 16S-based approach often lead to profiling discrepancies, particularly at the species level, compromising the accuracy and reliability of findings.

Results: To address this issue, we present TaxaCal (Taxonomic Calibrator), a machine learning algorithm designed to calibrate species-level taxonomy profiles in 16S amplicon data using a two-tier correction strategy. Validation on in-house produced and public datasets shows that TaxaCal effectively reduces biases in amplicon sequencing, mitigating discrepancies between microbial profiles derived from 16S and WGS. Moreover, TaxaCal enables seamless cross-platform comparisons between these two sequencing approaches, significantly improving disease detection in 16S-based microbiome data.

Conclusions: Therefore, TaxaCal offers a cost-effective solution for generating high-resolution microbiome species profiles that closely align with WGS results, enhancing the utility of 16S-based profiling in microbiome research. As microbiome-based diagnostics continue to evolve, TaxaCal has the potential to be a crucial tool in advancing the utility of 16S sequencing in clinical and research settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12107961PMC
http://dx.doi.org/10.1186/s12859-025-06156-7DOI Listing

Publication Analysis

Top Keywords

16s amplicon
8
amplicon data
8
amplicon sequencing
8
taxacal
6
16s
5
sequencing
5
taxacal enhancing
4
enhancing species-level
4
species-level profiling
4
profiling accuracy
4

Similar Publications

Nitrifying communities in activated sludge play a crucial role in biological nitrogen removal processes in municipal wastewater treatment plants. While extensive research has been conducted in temperate regions, limited information is available on nitrifiers in tropical regions. The present study investigated all currently known nitrifying communities in two full-scale municipal wastewater treatment plants in Malaysia operated under low-dissolved oxygen (DO) (0.

View Article and Find Full Text PDF

Amplicon sequencing is a popular method for understanding the diversity of bacterial communities in samples containing multiple organisms as exemplified by 16S rRNA sequencing. Another application of amplicon sequencing includes multiplexing both primer sets and samples, allowing sequencing of multiple targets in multiple samples in the same sequencing run. Multiple tools exist to process the amplicon sequencing data produced via the short-read Illumina platform, but there are fewer options for long-read Oxford Nanopore Technologies (ONT) sequencing, or for processing data from environmental surveillance or other sources with many different organisms.

View Article and Find Full Text PDF

Unravelling novel microbial players in the breast tissue of TNBC patients: a meta-analytic perspective.

NPJ Biofilms Microbiomes

September 2025

Bioinformatics Group, Centre for Informatics Science (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt.

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer (BC), accounting for nearly 40% of BC-related deaths. Emerging evidence suggests that the breast tissue microbiome harbors distinct microbial communities; however, the microbiome specific to TNBC remains largely unexplored. This study presents the first comprehensive meta-analysis of the TNBC tissue microbiome, consolidating 16S rRNA amplicon sequencing data from 200 BC samples across four independent cohorts.

View Article and Find Full Text PDF

The maternal microbiome during pregnancy and the peripartum period plays a critical role in maternal health outcomes and establishing the neonatal gut microbiome, with long-term implications for offspring health. However, a healthy microbiome during these key periods has not been definitively characterized. This longitudinal study examines maternal and neonatal microbiomes using 16S rRNA amplicon sequencing in a Japanese cohort throughout pregnancy and the postpartum period.

View Article and Find Full Text PDF

Sequencing of the 16S ribosomal RNA (rRNA) gene is an important tool in addition to conventional methods for the identification of bacterial pathogens in human infections. In polymicrobial samples, Sanger sequencing can produce uninterpretable chromatograms. This limitation can be overcome by Next Generation Sequencing (NGS) of the 16S rRNA gene.

View Article and Find Full Text PDF