Identification of key modules and genes in response to high-temperature stress in Platostoma palustre based on WGCNA.

BMC Plant Biol

Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Platostoma palustre (Blume) A. J. Paton is one of the important medicinal and edible plants in China, and it is widely cultivated in tropical and subtropical regions of southern China. In these areas, high-temperature stress (HTS) is often one of the unfavorable environmental factors affecting the growth and yield of P. palustre. Nevertheless, the molecular mechanism underlying the response of P. palustre to HTS remains unclear. In this study, we used two varieties of P. palustre, LSL and MDG, as experimental materials to identify key genes involved in the response of P. palustre to HTS by employing transcriptome sequencing technology, thereby revealing the molecular mechanism underlying its adaptation to HTS. The results showed that HTS significantly influenced the plant height, above-ground fresh weight, root fresh weight, root growth, chlorophyll a, chlorophyll b, chlorophyll a + b, and carotenoid content of P. palustre plants. MDG exhibited stronger high-temperature tolerance compared to LSL. Under HTS, 8352 DEGs were up-regulated and 9201 DEGs were down-regulated in HT_LSL_vs_CK_LSL, while 5433 DEGs were up-regulated and 6325 DEGs were down-regulated in HT_MDG_vs_CK_MDG, suggesting a significant difference in gene expression levels between LSL and MDG under HTS. KEGG enrichment analysis showed the pathways possibly involved in HTS responses in P. palustre, such as plant hormone signal transduction, brassinosteroid biosynthesis, phenylpropanoid biosynthesis, pentose and glucuronate interconversions, diterpenoid biosynthesis, flavonoid biosynthesis, etc. Further weighted gene co-expression network analysis (WGCNA) identified 14 modules and 61 hub genes closely related to the response to HTS in P. palustre. The hub genes included peroxidase 51-like (TRINITY_DN34017_c0_g1), UDP-glucuronate 4-epimerase 1-like (GAE1, TRINITY_DN815_c0_g3), NAC domain-containing protein 1 (NAC, TRINITY_DN328_c0_g1), UGT73A13 (TRINITY_DN8437_c0_g2), universal stress protein 7 (USP7, TRINITY_DN6361_c0_g2), malonyl-coenzyme: anthocyanin 5-O-glucoside-6'''-O-malonyltransferase-like (5MaT1, TRINITY_DN3589_c0_g1), ent-kaurene synthase 5 (KSL5, TRINITY_DN5126_c0_g1), ABC transporter (TRINITY_DN39495_c0_g1, TRINITY_DN10383_c0_g1), etc. This study investigated the molecular mechanism of heat tolerance in P. palustre at the gene expression level, providing a scientific basis for heat-tolerant breeding of P. palustre.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12105180PMC
http://dx.doi.org/10.1186/s12870-025-06686-5DOI Listing

Publication Analysis

Top Keywords

molecular mechanism
12
palustre
11
hts
9
high-temperature stress
8
platostoma palustre
8
mechanism underlying
8
response palustre
8
palustre hts
8
lsl mdg
8
fresh weight
8

Similar Publications

Analyzing the toxicological effects of PET-MPs on male infertility: Insights from network toxicology, mendelian randomization, and transcriptomics.

Reprod Biol

September 2025

Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 218 Jixi Road, Hefei Anhui230022, China; Key Laboratory of Population Health Across

Current research indicates that polyethylene terephthalate microplastics (PET-MPs) may significantly impair male reproductive function. This study aimed to investigate the potential molecular mechanisms underlying this impairment. Potential gene targets of PET-MPs were predicted via the SwissTargetPrediction database.

View Article and Find Full Text PDF

Understanding the evaporation mechanism of liquid ethanol and ethanol-water binary mixtures is important for numerous scientific and industrial processes. The amount of water in liquid water-ethanol mixtures can significantly affect how quickly ethanol molecules evaporate. Here, we study the mechanism and rate of evaporation of ethanol from pure liquid ethanol and ethanol/water binary mixtures through both unbiased molecular dynamics simulations and biased simulations using the umbrella sampling method.

View Article and Find Full Text PDF

Background: Crohn's disease (CD) and rheumatoid arthritis (RA) are autoimmune diseases. CD is known to be closely associated with RA. However, the mechanisms underlying these relationships remain unclear.

View Article and Find Full Text PDF

The hallmarks of mechanosensitive ion channels have been observed for half a century in various cell lines, although their mechanisms and molecular identities remained unknown until recently. Identification of the bona fide mammalian mechanosensory Piezo channels resulted in an explosion of research exploring the translation of mechanical cues into biochemical signals and dynamic cell morphology responses. One of the Piezo isoforms - Piezo1 - is integral in the erythrocyte (red blood cell; RBC) membrane.

View Article and Find Full Text PDF

Horizontal Gene Transfer and Recombination in Cyanobacteriota.

Annu Rev Microbiol

September 2025

4Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France.

Cyanobacteria played a pivotal role in shaping Earth's early history and today are key players in many ecosystems. As versatile and ubiquitous phototrophs, they are used as models for oxygenic photosynthesis, nitrogen fixation, circadian rhythms, symbiosis, and adaptations to harsh environments. Cyanobacterial genomes and metagenomes exhibit high levels of genomic diversity partly driven by gene flow within and across species.

View Article and Find Full Text PDF