98%
921
2 minutes
20
Climate-related problems such as drought stress, extreme temperature, erratic rainfall patterns, soil degradation, heatwaves, flooding, water logging, pests and diseases afflict the production and sustainability of sorghum. These challenges may be addressed by adopting climate-resilient practices and using advanced agronomic techniques. These challenges are being addressed through innovative applications of plant biotechnology and microbiology, which offer targeted solutions to enhance sorghum's resilience. For instance, biotechnological tools like CRISPR/Cas9 enable precise genetic modifications to improve drought and heat tolerance, while microbial inoculants, such as plant growth-promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF), enhance nutrient uptake and stress tolerance through symbiotic interactions. However, biotechnological tools lead to the development of sorghum varieties with heat, drought and salinity tolerance, while marker-assisted selection significantly accelerates breeding for stress-resilient traits. When genetic engineering is introduced, genes encoding heat shock proteins, Osmo protectants and antioxidant pathways are introduced to increase plant resistance to abiotic stress. These compounds stabilise cellular structures, protect enzymes, and maintain osmotic balance, enhancing the plant's ability to survive and function in adverse environmental conditions. At the same time, it is reported that microbiology offers beneficial microbes, nitrogen-fixing bacteria, phosphate-solubilizing microorganisms, and arbuscular mycorrhizal fungi that help enhance nutrient availability, soil health and water uptake. Combinations of endophytes and microbial inoculants enhance plant immunity to pests and diseases while increasing tolerance to stress. Biocontrol agents such as Bacillus and Trichoderma contain suppression of pathogens and need less dependence on the use of chemical pesticides. On top of that, genetic modification increases the nutritional quality of sorghum biofortified. This is where biotechnology and microbiology work together to deliver sustainable farming systems reducing environmental impacts, boosting yields and securing food supply under environmental stresses. This review aims to examine the synergistic integration of plant biotechnology and microbial interactions as a strategy to enhance sorghum's resilience to climate-induced stresses, including drought, elevated temperatures, and nutrient-deficient soils. It highlights recent advancements in biotechnological tools such as gene editing, marker-assisted selection, and tissue culture, alongside the emerging role of plant-beneficial microbes in promoting stress tolerance and improving soil health. By synthesizing current knowledge across these disciplines, this review seeks to outline a framework for future research that harnesses the intersection of biotechnology and microbial ecology to support the sustainable improvement of sorghum resilience.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12106188 | PMC |
http://dx.doi.org/10.1186/s12284-025-00796-2 | DOI Listing |
NPJ Biofilms Microbiomes
September 2025
Bioinformatics Group, Centre for Informatics Science (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt.
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer (BC), accounting for nearly 40% of BC-related deaths. Emerging evidence suggests that the breast tissue microbiome harbors distinct microbial communities; however, the microbiome specific to TNBC remains largely unexplored. This study presents the first comprehensive meta-analysis of the TNBC tissue microbiome, consolidating 16S rRNA amplicon sequencing data from 200 BC samples across four independent cohorts.
View Article and Find Full Text PDFInt J Pharm
September 2025
Department of Pharmaceutical Sciences, Via del Liceo 1, 06123 Perugia, Italy. Electronic address:
Indole-3-carboxaldehyde (I3A), a microbial tryptophan metabolite, exhibits significant immunomodulatory activity at the host-microbial interface. However, its rapid transformation into metabolites like indole-3-carboxylic acid (I3CA) raises questions about their therapeutic potential. This study aimed to evaluate the pharmacological contributions of I3CA through the development of a proper delivery strategy.
View Article and Find Full Text PDFEcotoxicol Environ Saf
September 2025
Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Department of Applied Biology and Chemistry, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Research In
This study aimed to elucidate the effects of arsenic species [As(III)/As(V)] and cadmium [Cd(II)] on nitrification and nitrogen fixation in soybean (Glycine max (L.) Merrill) cultivation, and to identify nitrogen cycle disruption mechanisms in realistic soil environments with a focus on soil-metal-plant-microbe interactions. We examined heavy metal(loid)s uptake in plant tissues, changes in nitrogen species in porewater, nitrogenase activity, the contents of essential trace metals (Mo and Fe) in nitrogenase, and nitrogen-related microbial communities.
View Article and Find Full Text PDFACS Synth Biol
September 2025
Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China.
The environmental resistance exhibited by microorganisms is concerned with their ability to withstand and adapt to an array of detrimental environmental conditions, with their survival and reproductive success being threatened. Within the realm of biotechnology, which emphasizes stress resistance, a critical role in bacterial adaptive strategies to environmental fluctuations is assumed to be in the periplasmic space. An innovative methodology to augment bacterial tolerance to stress by employing a mucin-mimetic collagen analogue, designated as S1552 (which is secreted into the periplasmic compartment), is introduced by this investigation.
View Article and Find Full Text PDFCell Biochem Biophys
September 2025
Medical Biotechnology Research Center, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran.
In cardiovascular research, melatonin has shown promise in exhibiting antifibrotic properties and modulating endoplasmic reticulum (ER) stress. However, the exact mechanism by which it influences myocardial fibrosis has not been fully clarified. Therefore, this research aimed to investigate the inhibitory effect of melatonin on the progression of myocardial fibrosis through a mechanism involving the BIP/PERK/CHOP signaling pathway, both in silico and in vivo experimental models.
View Article and Find Full Text PDF