98%
921
2 minutes
20
Background: Colorectal adenocarcinoma (COAD) is among the most common causes of cancer-related death globally. Early detection and targeted therapy depend on identifying key molecular biomarkers that drive tumor progression. The molecular heterogeneity of COAD demands robust computational strategies to improve the accuracy of biomarker discovery.
Methods: We developed and implemented a comprehensive, multi-step bioinformatics and statistical pipeline to systematically prioritize clinically relevant biomarkers in COAD. This pipeline integrated differential gene expression analysis, protein-protein interaction (PPI) network construction, and functional enrichment analysis to identify key hub genes associated with tumor progression. We subsequently applied principal component analysis (PCA) and overall survival modeling to evaluate the diagnostic and prognostic relevance of these candidates. Receiver operating characteristic (ROC) curve analysis was used to assess their sensitivity and specificity. Finally, experimental validation of the prioritized hub genes was conducted via qPCR across three CRC cell lines (LoVo, HCT-116, and HT-29), confirming their upregulation and supporting their clinical potential.
Results: Our integrative pipeline prioritized five key hub genes (CDH3, CXCL1, MMP1, MMP3, and TGFBI) as significantly upregulated in COAD tissues compared to normal controls. Functional enrichment analysis linked these genes to extracellular matrix degradation, epithelial-mesenchymal transition (EMT), inflammatory signaling, and tumor invasion, underscoring their roles in key oncogenic processes. Survival analysis revealed varying degrees of association with patient prognosis, most notably for CXCL1. Diagnostic performance, assessed by ROC analysis, yielded moderate AUC values (0.669-0.692), supporting their potential as biomarkers. Finally, qPCR validation across three CRC cell lines confirmed robust upregulation of all five genes, reinforcing their biological relevance in COAD progression.
Conclusion: Our study establishes a reproducible, integrative bioinformatics and statistical framework for the systematic identification of clinically actionable biomarkers in CRC. The five hub genes prioritized (CDH3, CXCL1, MMP1, MMP3, and TGFBI) demonstrated consistent diagnostic and prognostic value, offering a solid basis for the development of non-invasive molecular diagnostics and contributing to precision oncology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2025.149594 | DOI Listing |
Eur J Gastroenterol Hepatol
September 2025
Department of Gastroenterology, First Affiliated Hospital of Shantou University Medical College, Shantou.
Background: Crohn's disease (CD) and rheumatoid arthritis (RA) are autoimmune diseases. CD is known to be closely associated with RA. However, the mechanisms underlying these relationships remain unclear.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Biology, Duke University, Durham, NC 27708.
Organisms use circadian clocks to synchronize physiological processes to anticipate the Earth's day-night cycles and regulate responses to environmental signals to gain competitive advantage. While divergent genetic clocks have been studied extensively in bacteria, fungi, plants, and animals, an ancient conserved circadian redox rhythm has been recently reported. However, its biological function and physiological outputs remain elusive.
View Article and Find Full Text PDFPsychopharmacology (Berl)
September 2025
Institute of Cardiovascular Research, Sleep Medical Center, Department of Psychiatry, Fundamental and Clinical Research on Mental Disorders Key Laboratory of Luzhou, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China.
Rationale: Genome-wide association studies (GWASs) are used to identify genetic variants for association with schizophrenia (SCZ) risk; however, each GWAS can only reveal a small fraction of this association.
Objectives: This study systematically analyzed multiple GWAS data sets to identify gene subnetwork and pathways associated with SCZ.
Methods: We identified gene subnetwork using dmGWAS program by combining SCZ GWASs and a human interaction network, performed gene-set analysis to test the association of gene subnetwork with clinical symptom scores and disease state, meanwhile, conducted spatiotemporal and tissue-specific expression patterns and cell-type-specific analysis of genes in the subnetwork.
Int J Gen Med
September 2025
Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.
Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.
Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.
J Inflamm Res
September 2025
Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
Introduction: While nucleus pulposus cell (NPC) degeneration is a primary driver of intervertebral disc degeneration (IVDD), the cellular heterogeneity and molecular interactions underlying NPC degeneration remain poorly characterized. Previous studies have shown that EGFR signaling plays a significant role in NPC differentiation and collagen matrix production. Consequently, this study aims to identify the critical downstream regulatory molecule of EGFR in the process of NPC degeneration.
View Article and Find Full Text PDF