Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Electrochemiluminescence (ECL) is a promising analytical technique that combines electrochemistry with chemiluminescence. The performance of ECL systems depends on luminophores. Nonetheless, conventional luminophores present certain limitations. At first, their ECL efficiencies often fall short of the requirements for accurate detection. Moreover, in complex environments, traditional materials struggle to selectively identify target compounds and are prone to interference. Furthermore, these materials exhibit a deficiency in flexibility and tunability, attributed to their rigid structure and inherent characteristics. Advancing ECL technology necessitates the creation of novel materials that improve efficiency, selectivity, stability, and flexibility.

Results: This review emphasizes the recent advances in ECL nanomaterials and their applications in biosensors. The discussion starts with a comprehensive examination of two main mechanisms of ECL emission: quenching ECL and co-reactant ECL. Various nanomaterials are then discussed, including semiconductor nanomaterials, metal nanoclusters, carbon nanomaterials, nanoscale aggregation-induced emission materials, organic nanomaterials, and composite nanomaterials, with emphasis on their unique ECL properties. Examples illustrate specific applications in disease diagnosis, environmental monitoring, and food safety testing. The review further examines the structural and luminescent characteristics of nanomaterials, which facilitate the advancement of novel ECL detection methodologies. Finally, we examine the existing challenges and propose possible avenues for the future advancement of innovative ECL nanomaterials.

Significance: ECL nanomaterials possess unique quantum sizes and surface effects. Through the design and selection of appropriate nanomaterials, extremely sensitive, selective, and stable ECL biosensors may be developed for the detection of particular targets, applicable in disease diagnostics, food safety, and environmental monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2025.344148DOI Listing

Publication Analysis

Top Keywords

ecl
13
ecl nanomaterials
12
nanomaterials
10
nanomaterials applications
8
applications biosensors
8
environmental monitoring
8
food safety
8
progress electrochemiluminescence
4
electrochemiluminescence nanomaterials
4
biosensors review
4

Similar Publications

Purpose: To evaluate whether primary graft failure (PGF) rates and endothelial cell loss (ECL) differ between surgeon-trephined/loaded and eye bank-preloaded Descemet stripping automated endothelial keratoplasty (DSAEK) grafts.

Setting: Tertiary care academic center.

Design: Retrospective case series and ex vivo laboratory study.

View Article and Find Full Text PDF

An electrochemiluminescence device powered by streaming potential for the detection of amines in flowing solution.

Nat Commun

September 2025

Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, Nagatsuta-cho, Midori-ku, Yokohama, Japan.

The research and implementation of portable and low-cost analytical devices that possess high reproducibility and ease of operation is still a challenging task, and a growing field of importance, within the analytical research. Herein, we report the concept, design and optimization of a microfluidic device based on electrochemiluminescence (ECL) detection that can be potentially operated without electricity for analytical purposes. The device functions exploiting the concept of streaming potential-driven bipolar electrochemistry, where a potential difference, generated from the flow of an electrolyte through a microchannel under the influence of a pressure gradient, is the driving force for redox reactions.

View Article and Find Full Text PDF

Ultrasensitive multifunctional biosensor integrating ECL quenching and DPV enhancement for early classification of thyroid cancer via BRAF V600E and microRNA-221 detection.

Biosens Bioelectron

September 2025

College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China. Electronic address:

Papillary thyroid carcinoma (PTC) is the most prevalent form of thyroid cancer with a high incidence among endocrine malignancies. It tends to metastasize early in lymph nodes and differs markedly from other subtypes in biological behavior, clinical management, and prognosis. Therefore, accurately distinguishing PTC from other pathological subtypes is crucial for guiding diagnosis and treatment decisions.

View Article and Find Full Text PDF

Peptide Sequence Modulating the Analytical Performance of Electrogenerated Chemiluminescence Peptide-Based Biosensors for Matrix Metalloproteinase 2.

Anal Chem

September 2025

Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.

Electrogenerated chemiluminescence (ECL) methods have been widely used in clinical diagnosis. Although ECL peptide-based biosensors continue to grow with good sensitivity and signal flexibility, little emphasis has been placed on the effect of the peptide sequence on ECL sensitivity. We herein studied the nuanced effects of different peptide sequences on the analytical performance of ECL peptide-based biosensors for matrix metalloproteinase 2 (MMP-2) assay, in which [(pbz)Ir(DMSO)Cl] (pbz = 3-(2-pyridyl)benzoic acid) was used as the ECL emitter while a specific peptide was used as the molecular recognition element.

View Article and Find Full Text PDF

P-Doped Cu-N-C Single-Atom Catalysts Boost Cathodic Electrochemiluminescence of Luminol for MicroRNA-320d Detection.

Anal Chem

September 2025

Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.

Compared with efficient anodic luminol electrochemiluminescence (ECL), the disadvantage of cathodic ECL is that luminol cannot be electrochemically oxidized in a direct manner, and the conversion efficiency of dissolved oxygen (DO) as the coreactant to reactive oxygen species (ROS) is poor, which limits its application. Therefore, it is necessary to develop a functional catalyst suitable for the luminol-DO ECL system to directly trigger cathodic ECL. In this study, a coordination microenvironment modulation strategy was proposed.

View Article and Find Full Text PDF