Recent advances, modification strategies and perspectives of BiWO in photocatalytic CO reduction reaction.

J Environ Sci (China)

State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Published: October 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

With the development of the global economy and the continuous consumption of fossil energy, a large amount of greenhouse gas CO has been emitted into the atmosphere. Therefore, how to reduce the concentration of CO in the atmosphere and convert it into high value-added products has gradually become a hot spot in scientific research. Photocatalytic CO reduction technology can combine semiconductor with solar energy to convert CO into high value-added organic carbon source through photocatalysis, which is of great significance for the effective utilization of solar energy and the emission reduction of CO. After decades of exploration, many effective photocatalysts have been discovered. Among them, BiWO with visible light absorption ability, as a new-type bismuth-based catalyst, has been widely studied due to its unique two-dimensional layered structure, stability, low cost and non-toxicity, et al. In this review, recent Advances of BiWO in photocatalytic CO reduction reaction are summarized, including reaction mechanism, product selective regulation, In-situ Fourier transform infrared spectra application, density functional theory calculation, and various modification strategies. Finally, based on the in-depth understanding of the above advances, the future modification strategies and design ideas of BiWO in the field of photocatalytic CO research are proposed. This has important practical significance for the latter design and development of BiWO-based composite photocatalysts with high CO conversion performance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jes.2024.09.007DOI Listing

Publication Analysis

Top Keywords

modification strategies
12
photocatalytic reduction
12
biwo photocatalytic
8
reduction reaction
8
convert high
8
high value-added
8
solar energy
8
advances modification
4
strategies perspectives
4
biwo
4

Similar Publications

Recent Advances in P450 Enzyme Engineering for the Production of Natural Products.

Chembiochem

September 2025

Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.

Natural products exhibit a wide range of biological activities and are the crucial resources for drug development and compound modification. Cytochrome P450 enzymes (P450s, CYP) are a class of multifunctional and stereoselective biocatalysts that utilize heme as a cofactor and can be employed in the biosynthesis of natural products. With the development of biotechnology, P450s have been widely applied in the synthesis of natural products.

View Article and Find Full Text PDF

Structural colors offer distinct advantages over traditional chemical colors (such as pigments and dyes), including high saturation, resistance to fading, and environmental friendliness. However, unlike traditional dyes or pigments that allow for Structural colors offer distinct advantages over traditional chemical colors (such as pigments and dyes), including high saturation, resistance to fading, and environmental friendliness. However, unlike traditional dyes or pigments that allow for arbitrary color adjustments during the coloring process, current structural color surfaces lack flexibility in control, as their colors are difficult to reprocess or adjust once formed.

View Article and Find Full Text PDF

The Epigenetic Regulation of Agronomic Traits and Environmental Adaptability in Brassicas.

Plant Cell Environ

September 2025

State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, International Joint R & D Center of Hebei Prov

As essential sources of vegetables, oilseeds, and forage, Brassica crops exhibit complex epigenetic regulation mechanisms involving histone modifications, DNA modifications, RNA modifications, noncoding RNAs, and chromatin remodelling. The agronomic traits and environmental adaptability of crops are regulated by both genetic and epigenetic mechanisms, while epigenetic variation can affect plant phenotypes without changing gene sequences. Furthermore, the impact of epigenetic modifications on plant phenotype has accelerated the crop breeding process.

View Article and Find Full Text PDF

Nucleic acid aptamers are artificial recognition elements with great potential in biotechnology. For their effective integration into nanodevices, rational strategies for optimizing aptamer affinity and regulating activity are essential. Artificial nucleotide analogs offer versatile tools for both fundamental and applied research in the aptamer field.

View Article and Find Full Text PDF

Enzyme-Click Postsynthetic Modification of Covalent Organic Frameworks for Photocatalytic HO Production.

J Am Chem Soc

September 2025

Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Guangdong-Hongkong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices and Department of Chemistry, S

Postsynthetic modification (PSM) is a powerful strategy for tailoring the structure and functionality of covalent organic frameworks (COFs). In this work, we present a novel enzymatic PSM strategy for functional group engineering within COFs. By taking advantage of enzymatic catalysis, 2-hydroxyethylthio (-S-EtOH) and ethylthio (-S-Et) groups were covalently implanted within the COF pore channels with high grafting efficiency under ambient aqueous conditions, highlighting the mild, efficient, and ecofriendly nature of this approach.

View Article and Find Full Text PDF