Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Endothelial cell (EC) dysfunction and gene expression abnormalities in pulmonary arterial hypertension (PAH) vary among patients. Existing PAH cell sources, often from lung transplant patients, are influenced by drug treatments and are inadequate for identifying early-stage PAH genes. We propose isolating viable circulating endothelial cells (CECs) from the whole blood of PAH patients to evaluate their potential as surrogates for PAH-ECs and discover novel gene expression profiles relevant to PAH. We developed a microfluidic bioengineering system to directly detect and separate CECs from the blood of PAH patients. Viable CECs were isolated and compared with those from healthy individuals and PAH patients. Differentially expressed genes (DEGs) were identified, and the role of the novel gene PRND in PAH was investigated using in vitro, genomic, and in vivo methods. CEC levels were higher in PAH patients and correlated with disease severity. Transcriptomic analysis revealed 138 DEGs when comparing healthy controls with PAH patients of intermediate severity. These DEGs were associated with PAH-specific markers and angiogenesis. The Doppel (PRND) gene, previously unlinked to PAH, was significantly upregulated in PAH-CECs and PAH-ECs. Overexpression of Doppel in human PAH-ECs matched 13-15 % of DEGs related to hypoxia and endothelial-to-mesenchymal transition (EndMT). Doppel blocking or knockdown in ECs activated the BMPRII/pSMAD1/5 pathway and altered EndMT-related gene levels, while Doppel-knockout mice showed reduced right ventricular systolic pressure in Sugen/Hypoxia PH model. Collectively our findings demonstrate that PAH patient-derived CECs are a promising tool for identifying novel genes involved in PAH pathogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2025.123429DOI Listing

Publication Analysis

Top Keywords

pah patients
20
pah
13
circulating endothelial
8
endothelial cells
8
pulmonary arterial
8
arterial hypertension
8
gene expression
8
cecs blood
8
blood pah
8
novel gene
8

Similar Publications

Pleural effusions (PLEF) in pulmonary arterial hypertension (PAH), particularly in patients with isolated right heart failure, are associated with poor prognosis and increased mortality. This study investigates changes in alveolar fluid clearance (AFC) transporter expression in relation to lung fluid accumulation and PLEF formation during PAH progression, as well as the effects of terbutaline (TER) and riociguat (RIO) treatment. Using a monocrotaline (MCT)-induced pulmonary hypertension (PH) rat model, we performed a detailed molecular analysis of AFC transporter expression at different disease stages, both before and after PH development.

View Article and Find Full Text PDF

Right ventricular (RV) failure is the primary cause of death among patients with pulmonary arterial hypertension (PAH). Patients with congenital heart disease-associated PAH (CHD-PAH) demonstrate improved outcomes compared to patients with other forms of PAH, which is related to the maintenance of an adaptively hypertrophied RV. In an ovine model of CHD-PAH, we aimed to elucidate the cellular, microvascular, and transcriptional adaptations to congenital pressure overload that support RV function.

View Article and Find Full Text PDF

Portopulmonary hypertension (POPH), a subtype of pulmonary arterial hypertension (PAH), develops with portal hypertension and may persist after liver transplantation. While there have been successes using balloon-occluded retrograde transvenous obliteration (BRTO) for POPH, no reports exist on long-term follow-up. A 60-year-old man with hepatitis C cirrhosis developed POPH.

View Article and Find Full Text PDF

Background: BMPR2 mutations cause heritable pulmonary arterial hypertension (PAH) and may also influence epithelial carcinogenesis.

Case Summary: We report 3 women with BMPR2-related PAH who developed early onset epithelial cancers: 2 breast cancers (34 and 54 years of age) and 1 colorectal cancer (47 years of age). All were on advanced PAH therapy at diagnosis.

View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) is characterized by vasoconstriction, proliferation, fibrosis, and microthrombosis of the pulmonary vasculature, which causes elevated pulmonary arterial pressure and vascular resistance leading to right ventricular failure and death. Previous treatments targeted three known pathways involved in the development of PAH: endothelin, nitric oxide, and prostacyclin. Dysfunctional signaling of the transforming growth factor-beta (TGF-β) family, via bone morphogenetic protein (BMP) receptor 2 and activin signaling, has also been implicated in PAH leading to the development of a new class of therapies.

View Article and Find Full Text PDF