Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pharmacogenomic variations in genes involved in drug disposition and in drug targets is a major determinant of inter-individual differences in drug response and toxicity. While the effects of common variants are well established, millions of rare variations remain functionally uncharacterized, posing a challenge for the implementation of precision medicine. Recent advances in machine learning (ML) have significantly enhanced the prediction of variant effects by considering DNA as well as protein sequences, as well as their evolutionary conservation and haplotype structures. Emerging deep learning models utilize techniques to capture evolutionary conservation and biophysical properties, and ensemble approaches that integrate multiple predictive models exhibit increased accuracy, robustness, and interpretability. This review explores the current landscape of ML-based variant effect predictors. We discuss key methodological differences and highlight their strengths and limitations for pharmacogenomic applications. We furthermore discuss emerging methodologies for the prediction of substrate-specificity and for consideration of variant epistasis. Combined, these tools improve the functional effect prediction of drug-related variants and offer a viable strategy that could in the foreseeable future translate comprehensive genomic information into pharmacogenetic recommendations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12203841PMC
http://dx.doi.org/10.1080/14622416.2025.2504863DOI Listing

Publication Analysis

Top Keywords

machine learning
8
learning models
8
evolutionary conservation
8
models pharmacogenomic
4
variant
4
pharmacogenomic variant
4
variant predictions
4
predictions developments
4
developments future
4
future frontiers
4

Similar Publications

Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.

Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.

View Article and Find Full Text PDF

Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.

View Article and Find Full Text PDF

Early prediction of orthodontic gingival enlargement using S100A4: a biomarker-based risk stratification model.

Odontology

September 2025

Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.

Orthodontic-induced gingival enlargement (OIGE) affects approximately 15-30% of patients undergoing orthodontic treatment and remains largely unpredictable, often relying on subjective clinical assessments made after irreversible tissue changes have occurred. S100A4 is a well-characterized marker of activated fibroblasts involved in pathological tissue remodeling. This was a cross-sectional precision biomarker study that analyzed gingival tissue samples from three groups: healthy controls (n = 60), orthodontic patients without gingival enlargement (n = 31), and patients with clinically diagnosed OIGE (n = 61).

View Article and Find Full Text PDF

Purpose: The study aims to compare the treatment recommendations generated by four leading large language models (LLMs) with those from 21 sarcoma centers' multidisciplinary tumor boards (MTBs) of the sarcoma ring trial in managing complex soft tissue sarcoma (STS) cases.

Methods: We simulated STS-MTBs using four LLMs-Llama 3.2-vison: 90b, Claude 3.

View Article and Find Full Text PDF