Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We developed a novel approach for generating rat offspring using rat embryonic stem (ES) cell-derived sperm produced in mice with the blastocyst complementation method. By optimizing culture conditions, we established naïve male rat ES cells from two transgenic rat strains expressing EGFP and Venus fluorescence, respectively. The pluripotency of these cells was confirmed by the formation of germline chimeras. These ES cells were then injected into blastocysts of germ cell-deficient mice, which resulted in chimeric mice with the ability to produce rat-derived sperm. Histological analysis confirmed the presence of seminiferous tubules and spermatozoa, which are morphologically characteristic of rats, in the chimeric testes. To evaluate the fertilization potential of the chimeric mouse sperm, we performed intracytoplasmic sperm injection (ICSI) to rat oocytes and successfully produced viable offspring carrying ES cell-derived traits. This method eliminates concerns regarding host cell contribution, as all sperm in the chimeras originate from rats, enabling the use of nonfluorescent cells. Furthermore, the absence of competition with host cells is expected to enhance sperm production efficiency. By utilizing germ cell-deficient mice as recipients, this approach offers a cost-effective and efficient strategy for generating genetically modified rats, addressing key limitations in rat ES cell-based genetic engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gtc.70024DOI Listing

Publication Analysis

Top Keywords

mice blastocyst
8
blastocyst complementation
8
germ cell-deficient
8
cell-deficient mice
8
sperm
7
rat
6
mice
5
cells
5
fertilizable rat
4
rat sperm
4

Similar Publications

Mitochondria in the egg are suggested to be crucial for the onset of new life. However, there is ambiguous knowledge about the necessity for fertilization and early embryonic development. Therefore, we created a conditional Tfam knockout (Tfam; Zp3-Cre) to produce Tfam oocytes for investigation of the mitochondrial abundance in oocytes and early embryos.

View Article and Find Full Text PDF

RNA-binding proteins (RBPs) are critical regulators of post-transcriptional gene expression and RNA processing during mammalian oocyte development. SERPINE1 mRNA-binding protein 1 (SERBP1), a conserved RNA-binding protein (RBP), exhibits prominent expression in the female reproductive system and throughout oogenesis. Conditional deletion of Serbp1 using oocyte-specific Zp3⁠/⁠Gdf9⁠-Cre drivers resulted in arrested oocyte growth, female infertility, and failure of blastocyst formation from two-cell embryos.

View Article and Find Full Text PDF

The mammalian uterus contains glands in the endometrium that develop only or primarily after birth. In the mouse, endometrial glands govern post implantation pregnancy establishment via regulation of blastocyst implantation, stromal cell decidualization, and placental development. Here, we describe a new uterine glandular epithelium (GE) specific Cre recombinase mouse line that is useful to study endometrial gland development and function.

View Article and Find Full Text PDF

Preeclampsia is one of the most common pregnancy disorders, and characterized by insufficient trophoblast invasion and placental inflammation. Our RNA sequencing results showed that OTU deubiquitinase, ubiquitin aldehyde binding 2 (OTUB2) was downregulated in placenta from preeclampsia patients, compared with the healthy control. Clinical and experimental data demonstrated that OTUB2 was expressed in macrophages.

View Article and Find Full Text PDF

Zygotic genome activation (ZGA) represents one of the most vulnerable periods to environmental perturbations. The objective of this study was to investigate the formation of stress granules in mouse embryos in response to temperature reduction during ZGA, preimplantation embryo mortality, and long-term phenotypic outcomes. These outcomes included the evaluation of expression noise in bilateral right/left limbs of offspring as an indicator of developmental instability, behavioral deviation, hippocampal volume, and metabolomics profiling in adult offspring.

View Article and Find Full Text PDF