Cellular crosstalk mediated by Meteorin-like regulating hepatic stellate cell activation during hepatic fibrosis.

Cell Death Dis

Department of Pathophysiology, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Province Talent Base of Research on the Pathogenesis and Drug Prevention and Treatment for Common Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Liver fibrosis is characterized by an excessive accumulation of extracellular matrix (ECM), primarily produced by activated hepatic stellate cells (HSCs). The activation of HSCs is influenced by paracrine signaling interactions among various liver cell types, but molecular mechanisms remain to be elucidated. Secretory Meteorin-like (Metrnl) can effectively ameliorate fulminant hepatitis. However, little is known about its role in liver fibrosis. In our study, we found that hepatic Metrnl mRNA transcripts and protein expression were significantly downregulated in patients and mouse models of hepatic fibrosis. Hepatocyte-specific and global knockout of Metrnl exacerbated CCl4-induced liver fibrosis. In contrast, the administration recombinant Metrnl or AAV-Metrnl overexpression markedly ameliorated CCl4-induced liver fibrosis in mice, suggesting a protective role for Metrnl. Mechanistically, hepatocyte-derived Metrnl not only influences the activation of HSCs through paracrine signaling but also modulates the release of the fibrogenic cytokine PDGFB via the transcription factor EGR1, thereby regulating PDGFB/PDGFRβ signaling to affect HSC activation. Furthermore, Metrnl absence in hepatocytes and HSCs leads to the downregulation of the E3 ubiquitin ligase HECW2, inhibiting K48-linked ubiquitination of FN and preventing its proteasomal degradation, thus promoting FN secretion from HSCs. These effects contribute to ECM deposition and the activation of HSCs, ultimately exacerbating liver fibrosis. Collectively, our study reveals Metrnl as a novel regulator of liver fibrosis that mediates communication between hepatocytes and HSCs, indicating its potential as a therapeutic target for liver fibrosis. The identification of Metrnl as a critical player in the pathogenesis of hepatic fibrosis underscores the importance of understanding cellular crosstalk in the progression of liver disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12092766PMC
http://dx.doi.org/10.1038/s41419-025-07734-6DOI Listing

Publication Analysis

Top Keywords

liver fibrosis
28
hepatic fibrosis
12
activation hscs
12
fibrosis
10
liver
9
metrnl
9
cellular crosstalk
8
hepatic stellate
8
paracrine signaling
8
ccl4-induced liver
8

Similar Publications

Background: The liver cone unit (Tokyo 2020 terminology) of the peripheral portal vein territory represents the smallest anatomical and functional unit of the liver. While this unit enables anatomical, subsegmental resection, particularly in patients with cirrhosis, the tumor-bearing cone unit can be challenging to identify intraoperatively. PATIENTS AND METHODS: A 58-year-old man with hepatitis C-related cirrhosis (Child-Pugh B) was diagnosed with a subcapsular hepatocellular carcinoma (HCC) in segment 8.

View Article and Find Full Text PDF

Background: The association between Teicoplanin (TEIC) total trough concentration (C) and adverse effects (hepatotoxicity, nephrotoxicity, and thrombocytopenia) in patients with hypoalbuminemia remains poorly understood. We examined this association for patients with hypoalbuminemia from a safety perspective.

Methods: This retrospective study included adult patients (≥18 years) who received TEIC at Kyushu Medical Center between April 2013 and March 2024, underwent therapeutic drug monitoring, and had persistent serum albumin < 2.

View Article and Find Full Text PDF

Hepatotoxicity induced by polylactic acid microplastics: The mediating role of gut microbiota and uric acid metabolism.

J Adv Res

September 2025

National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China. Electronic address: huangzhenlie85825

Introduction: The increasing use of biodegradable plastics has led to the inevitable human consumption of biodegradable microplastics (MPs). These MPs can be degraded and absorbed into various organs and tissues via the gastrointestinal tract, with the liver being the primary target for digestion and absorption.

Objectives: This study aimed to investigate the toxic effects and mechanisms of biodegradable MPs on the liver following gastrointestinal degradation.

View Article and Find Full Text PDF