Modified quantum dilated convolutional neural network for cancer prediction using gene expression data.

Comput Methods Biomech Biomed Engin

Assistant Professor, Department of Information Technology, Kongunadu College of Engineering and Technology, Trichy, Tamil Nadu, India.

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This paper proposes a modified Quantum Dilated Convolutional neural network (QDCNN) to detect cancer using gene expression data. Primarily, the input gene expression data is taken from a specified dataset. Then, data transformation is done using Adaptive Box-Cox transformation and feature fusion is done by a Deep Neural Network (DNN) with Kulczynski. The refined features are then fed into the modified QDCNN, which effectively predicts cancer. The modified QDCNN attains an accuracy of 90.6%, a True Positive Rate (TPR) of 89.0%, False Negative Rate (FNR) of 0.109, and a Matthews correlation coefficient (MCC) of 89.9% when using the PANCAN dataset.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10255842.2025.2502816DOI Listing

Publication Analysis

Top Keywords

neural network
12
gene expression
12
expression data
12
modified quantum
8
quantum dilated
8
dilated convolutional
8
convolutional neural
8
modified qdcnn
8
modified
4
network cancer
4

Similar Publications

Postoperative aphasia (POA) is a common complication in patients undergoing surgery for language-eloquent lesions. This study aimed to enhance the prediction of POA by leveraging preoperative navigated transcranial magnetic stimulation (nTMS) language mapping and diffusion tensor imaging (DTI)-based tractography, incorporating deep learning (DL) algorithms. One hundred patients with left-hemispheric lesions were retrospectively enrolled (43 developed postoperative aphasia, as the POA group; 57 did not, as the non-aphasia (NA) group).

View Article and Find Full Text PDF

Machine learning (ML) and deep learning (DL) methodologies have significantly advanced drug discovery and design in several aspects. Additionally, the integration of structure-based data has proven to successfully support and improve the models' predictions. Indeed, we previously demonstrated that combining molecular dynamics (MD)-derived descriptors with ML models allows to effectively classify kinase ligands as allosteric or orthosteric.

View Article and Find Full Text PDF

In recent AI-driven disease diagnosis, the success of models has depended mainly on extensive data sets and advanced algorithms. However, creating traditional data sets for rare or emerging diseases presents significant challenges. To address this issue, this study introduces a direct-self-attention Wasserstein generative adversarial network (DSAWGAN) designed to improve diagnostic capabilities in infectious diseases with limited data availability.

View Article and Find Full Text PDF

Li-Well ZnO Memtransistors: High Reliability for Neuromorphic Applications.

Adv Mater

September 2025

Department of Materials Science & Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea.

Memtransistors are active analog memory devices utilizing ionic memristive materials as channel layers. Since their introduction, the term "memtransistor" has widely been adopted for transistors exhibiting nonvolatile memory characteristics. Currently, memtransistor devices possessing both transistor on/off functionality and nonvolatile memory characteristics include ferroelectric field-effect transistors (FeFETs) and charge-trap flash (floating gate), yet ionic memtransistors have not matched their performance.

View Article and Find Full Text PDF

Background And Purpose: Neuroinflammation is increasingly recognised to contribute to drug-resistant epilepsy. Activation of ATP-gated P2X7 receptors has emerged as an important upstream mechanism, and increased P2X7 receptor expression is present in the seizure focus in rodent models and patients. Pharmacological antagonists of P2X7 receptors attenuate seizures in rodents, but this has not been explored in human neural networks.

View Article and Find Full Text PDF