Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rechargeable zinc-ion batteries have emerged as one of the most promising candidates for large-scale energy storage applications due to their high safety and low cost. However, the use of Zn metal in batteries suffers from many severe issues, including dendrite growth and parasitic reactions, which often lead to short cycle lives. Herein, we propose the construction of functional organic interfacial layers (OIL) on the Zn metal anodes to address these challenges. Through a well-designed organic-assist pre-construction process, a densely packed artificial layer featuring the immobilized zwitterionic molecular brush can be constructed, which can not only efficiently facilitate the smooth Zn plating and stripping, but also introduce a stable environment for battery reactions. Through density functional theory calculations and experimental characterizations, we verify that the immobilized organic propane sulfonate on Zn anodes can significantly lower the energy barrier and increase the kinetics of Zn transport. Thus, the Zn metal anode with the functional OIL can significantly improve the cycle life of the symmetric cell to over 3500 h stable operation. When paired with the HVO cathode, the aqueous Zn-ion full cells can be continuously cycled over 7000 cycles, marking an important milestone for Zn anode development for potential industrial applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12092924PMC
http://dx.doi.org/10.1007/s40820-025-01782-5DOI Listing

Publication Analysis

Top Keywords

zwitterionic molecular
8
molecular brush
8
functional organic
8
organic interfacial
8
interfacial layers
8
immobilizing zwitterionic
4
functional
4
brush functional
4
layers ultra-stable
4
ultra-stable zn-ion
4

Similar Publications

Antifouling Molecularly Imprinted Photoelectrochemical Sensors for Ultrasensitive and Selective Detection of the Sulfamethoxazole Antibiotic.

Anal Chem

September 2025

Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.

Sulfamethoxazole (SMX) is a widely used antibiotic with toxic and persistent residues, which poses potential health risks in aquatic environments. However, reliable and accurate detection is impeded by the nonspecific adsorption of interfering biomolecules in complex matrices. This study develops a molecularly imprinted photoelectrochemical (PEC) sensor based on BiOS/BiWO with excellent selectivity and antifouling properties.

View Article and Find Full Text PDF

Mitochondrial-Targeting Zwitterionic Nanomedicine Based on Tertiary Amine -oxide Polymers for Triple-Negative Breast Cancer Therapy.

Biomacromolecules

September 2025

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.

Triple-negative breast cancer (TNBC) remains a formidable clinical challenge due to its aggressive behavior, lack of therapeutic targets, and poor prognosis. The PI3K/AKT/mTOR pathway is highly activated in TNBC, making it a promising therapeutic target. Conventional PEGylated nanocarriers often face challenges, such as accelerated blood clearance and lysosomal trapping.

View Article and Find Full Text PDF

Heavy alkali metal complexes of N-heterocyclic carbenes.

Chem Commun (Camb)

September 2025

Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.

N-Heterocyclic carbene complexes of alkali metals (M = Na, K, Rb, Cs) were prepared from the zwitterionic trimethylsilylimidazolium borate [(CF)B(IDipp)SiMe] (1) by reaction with the corresponding alkali metal -butoxides MOBu. The alkali metal complexes were isolated as tetrahydrofuran (THF) solvates of the type [(CF)B(IDipp)M(THF), 2M(THF), and their molecular structures were determined by single-crystal X-ray diffraction analysis.

View Article and Find Full Text PDF

α-Lipoic acid (LA) has recently emerged as an attractive, inexpensive monomer for synthesizing degradable polymers via ring-opening of its 1,2-dithiolane, introducing easily cleavable disulfide linkages into polymer backbones. Reversible addition-fragmentation chain transfer (RAFT) copolymerization with vinyl monomers enables access to degradable poly(disulfide)s with controlled molecular weights. However, conventional thermal RAFT methods suffer from oxygen sensitivity, limited LA incorporation (<40 mol%), and modest degrees of polymerization (DP < 300).

View Article and Find Full Text PDF

Multiple biological barriers severely restrict the delivery efficiency of nanoparticles (NPs) to tumors. To overcome biological barriers, traditional NPs usually require a complex design, which increases the difficulty of clinical translation. Therefore, there appears to be a dilemma between the complex biological barriers and clinical requirement for a simple molecular structure of NPs.

View Article and Find Full Text PDF