Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Genetically engineering human immune cells has been shown to be an effective approach for developing novel cellular therapies to treat a wide range of diseases. To expand the scope of these cellular therapies while solving persistent challenges, extensive research and development is still required. Here we use a digital microfluidic enabled electroporation system (referred to as triDrop) specifically designed to mitigate harm during electroporation procedures and compare against two state-of-the-art commercially available systems for the engineering of primary human T cells. We describe the ability to use triDrop for highly efficient transfection with minimal reagent consumption while preserving a healthy transcriptomic profile. Finally, we show for the first time the ability to use a digital microfluidic platform for the miniaturized production of Chimeric Antigen Receptor (CAR) T cell therapies demonstrating how this novel system can lead to a 2-fold improvement in immunotherapeutic functionality compared to gold standard methods while providing up to a 20-fold reduction in cost. These results highlight the potential power of this system for automated, rapid, and affordable next-generation cell therapy R&D.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.4c06911DOI Listing

Publication Analysis

Top Keywords

digital microfluidic
12
microfluidic platform
8
cell therapies
8
cellular therapies
8
platform microscale
4
microscale production
4
production functional
4
functional immune
4
immune cell
4
therapies
4

Similar Publications

Wearable sensors for animal health and wellness monitoring.

Prog Mol Biol Transl Sci

September 2025

Nanobiology and Nanozymology Research Laboratory, National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Hyderabad, Telangana, India; Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India. Electronic address:

Biosensors are rapidly emerging as a key tool in animal health management, therefore, gaining a significant recognition in the global market. Wearable sensors, integrated with advanced biosensing technologies, provide highly specialized devices for measuring both individual and multiple physiological parameters of animals, as well as monitoring their environment. These sensors are not only precise and sensitive but also reliable, user-friendly, and capable of accelerating the monitoring process.

View Article and Find Full Text PDF

Multiscale Engineered Heterogeneous Hydrogel Composites for Digital Light Processing 3D Printing.

ACS Appl Mater Interfaces

September 2025

Department of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States.

Hydrogel-based bioinks are widely adopted in digital light processing (DLP) 3D printing. Modulating their mechanical properties is especially beneficial in biomedical applications, such as directing cell activity toward tissue regeneration and healing. However, in both monolithic and granular hydrogels, the tunability of mechanical properties is limited to parameters such as cross-linking or packing density.

View Article and Find Full Text PDF

SEE-phAST: Spatially encapsulated emulsions for phenotypic antibiotic susceptibility testing via sequential digital RAA-CRISPR.

Biosens Bioelectron

August 2025

Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 1

The escalating threat of antimicrobial resistance is exacerbated by delayed diagnostics and improper antibiotics use, underscoring an urgent demand for rapid, versatile AST tools to support evidence-based prescribing. In this study, we present an innovative, generalizable phenotypic AST approach by quantifying bacterial gDNA copy number variations (CNVs) following 0.5-h-brief culturing with antibiotic exposure, termed spatially encapsulated emulsions (SEE)-phAST.

View Article and Find Full Text PDF

In recent years, the detection urinary DNA methylation in bladder cancer has witnessed significant advancements. Important breakthroughs have been achieved in the diagnosis of bladder cancer through the use of DNA methylation biomarkers in urine. Several clinical studies have successfully established multiple biomarkers and developed reliable diagnostic models.

View Article and Find Full Text PDF

Early detection of sepsis is critical for improving patient outcomes and reducing mortality. This includes the development of rapid, portable, and cost-effective point-of-care (POC) diagnostic tools. Recent advances in biosensors, microfluidics, and lab-on-a-chip (LOC) platforms, along with improvements in data analytics, have paved the way for novel POC systems.

View Article and Find Full Text PDF