98%
921
2 minutes
20
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/all.16586 | DOI Listing |
Eur Radiol
September 2025
Quantitative Imaging Biomarkers in Medicine, Quibim, Valencia, Spain.
Objectives: In non-small cell lung cancer (NSCLC), non-invasive alternatives to biopsy-dependent driver mutation analysis are needed. We reviewed the effectiveness of radiomics alone or with clinical data and assessed the performance of artificial intelligence (AI) models in predicting oncogene mutation status.
Materials And Methods: A PRISMA-compliant literature review for studies predicting oncogene mutation status in NSCLC patients using radiomics was conducted by a multidisciplinary team.
J Ultrasound Med
September 2025
Department of Clinical Analysis, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil.
Objectives: To evaluate the performance of artificial intelligence (AI)-based models in predicting elevated neonatal insulin levels through fetal hepatic echotexture analysis.
Methods: This diagnostic accuracy study analyzed ultrasound images of fetal livers from pregnancies between 37 and 42 weeks, including cases with and without gestational diabetes mellitus (GDM). Images were stored in Digital Imaging and Communications in Medicine (DICOM) format, annotated by experts, and converted to segmented masks after quality checks.
Curr Med Chem
August 2025
Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007, Uttar Pradesh, India.
Globally, millions of individuals suffer from infectious diseases, which are major public health concerns caused by bacteria, fungi, viruses, or parasites. These diseases can be transmitted directly or indirectly from person to person, potentially leading to a pandemic or epidemic. Several advancements have been made in molecular genetics for infectious disease management, which include pharmaceutical chemistry, medicine, and infection tracking; however, these advancements still lack control over human infections.
View Article and Find Full Text PDFJ Dent
September 2025
Dental Clinic Post-Graduate Program, University Center of State of Pará, Belém, Pará, Brazil. Electronic address:
Objective: This study evaluated the coherence, consistency, and diagnostic accuracy of eight AI-based chatbots in clinical scenarios related to dental implants.
Methods: A double-blind, clinical experimental study was carried out between February and March 2025, to evaluate eight AI-based chatbots using six fictional cases simulating peri-implant mucositis and peri-implantitis. Each chatbot answered five standardized clinical questions across three independent runs per case, generating 720 binary outputs.
Biology (Basel)
August 2025
College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
Targeted sequencing, a pivotal branch of next-generation sequencing (NGS), enables the selective enrichment of specific genomic regions and has demonstrated significant advantages in the detection of animal pathogens. This review systematically explores the underlying principles of targeted sequencing, various enrichment strategies-including PCR amplification, probe hybridization, and CRISPR-Cas systems-and their key applications in veterinary pathogen diagnostics. Due to its high throughput, sensitivity, and cost-effectiveness, targeted sequencing has been successfully applied in the multiplex detection of pathogens in economically significant livestock, such as cattle, as well as in the surveillance of antimicrobial resistance (AMR) genes, pathogen typing, and source tracing.
View Article and Find Full Text PDF