98%
921
2 minutes
20
Context: This study investigates the synthesis, structural characteristics, thermal properties, and biological activity of the double selenate salt NaCd(SeO)·2HO. The synthesis of this compound was driven by the need for novel materials with potential applications in medicinal chemistry and materials science. The structural integrity and physicochemical properties of NaCd(SeO)·2HO were confirmed through a series of characterization techniques, including FT-IR spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic light scattering (DLS), and zeta potential measurements. The thermal behavior of the compound, exhibiting a multi-stage decomposition pattern, provides important insights into its stability and transformation mechanisms, essential for its potential use in various applications. Biological testing, conducted on the HepG2 liver cancer cell line, revealed a dose-dependent cytotoxic effect, with morphological changes and cytoskeletal disruption at higher concentrations, highlighting the compound's anticancer potential. The compound also demonstrated a high zeta potential, indicating good colloidal stability and suggesting favorable bioavailability. These findings underscore the relevance of NaCd(SeO)·2HO for biomedical applications, particularly in anticancer therapies, where its unique combination of properties may offer therapeutic advantages.
Methods: Quantum chemical calculations were performed using density functional theory (DFT) to gain insights into the electronic structure, molecular geometry, and nonlinear optical (NLO) properties of NaCd(SeO)·2HO. Molecular electrostatic potential (MEP) mapping revealed nucleophilic and electrophilic activity regions, pointing to possible reactive sites. Frontier molecular orbital (FMO) analysis indicated a moderate HOMO-LUMO energy gap, suggesting a balance between stability and reactivity. Thermal decomposition stages were characterized using TGA and DSC, with identifiable mass loss steps corresponding to water release and selenium dioxide formation. In vitro biological evaluation was conducted on HepG2 cells using MTT assays, immunofluorescence staining, and morphological analysis. The IC₅₀ value was established at approximately 0.05 µg/ml. Zeta potential and DLS analyses were employed to assess colloidal behavior and particle distribution. Together, these methodologies support the promising physicochemical and biological profile of NaCd(SeO)·2HO, justifying its further investigation for nanomedicine and drug delivery applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-025-06387-8 | DOI Listing |
Appl Biochem Biotechnol
September 2025
Operating Room, Shanghai Tianyou Hospital, No.528, Zhennan Road, Putuo District, Shanghai, 200331, China.
Gastric cancer (GC) is a malignant tumor originating from the epithelial cells of the gastric mucosa. The 5-methylcytosine (mC) modification refers to the addition of a methyl group to the fifth carbon atom of cytosine in RNA molecules. This study aimed to investigate the role of NOL1/NOP2/SUN domain (NSUN)6 in GC and its underlying molecular mechanisms.
View Article and Find Full Text PDFLangmuir
September 2025
Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States.
The surfaces of 1D layered lepidocrocite-structured titanates (1DLs) are negatively charged due to an oxygen-to-titanium atomic ratio >2. This, and their layered structure, allow for facile ion exchange and high colloidal stability, demonstrated by ζ-potentials of ≈ -85 mV at their unadjusted pH of ≈10.4.
View Article and Find Full Text PDFJ Drug Target
September 2025
Department of Pharmacology, Rajarshi Shahu College of Pharmacy, Buldana, Maharashtra, INDIA.
Natural phytoconstituents such as betanin and curcumin have attracted interest for their significant antioxidant and anti-inflammatory properties. Their therapeutic efficacy is notably constrained by inadequate bioavailability and reduced skin permeability. The current study developed an ethosome-based gel system for the delivery of betanin and curcumin, with the objective of improving transdermal penetration and providing sustained anti-inflammatory effects.
View Article and Find Full Text PDFJ Sci Food Agric
September 2025
College of Food Science & Technology, Shanghai Ocean University, Shanghai, China.
Background: Kaempferol (KAE), a bioactive flavonoid, has limited solubility and stability in water. Zein-gum arabic (GA) nanoparticles (NPs) are promising carriers for KAE, but the influence of preparation methods on their structure and properties remains unclear. This study investigated the effect of preparation method on the structure and properties of KAE-loaded zein-GA NPs.
View Article and Find Full Text PDFInt J Nanomedicine
September 2025
Department of Pharmaceutics and Pharmaceutical Technology, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia.
Background: Candidiasis, predominantly caused by , poses a significant global health challenge, especially in tropical regions. Nystatin is a potent antifungal agent that is hindered by its low solubility and permeability, limiting its clinical efficacy.
Methods: This study aimed to investigate the potential of a layer-by-layer (LBL) coating system, employing chitosan and alginate, to improve the stability, entrapment efficiency (%EE), and antifungal efficacy of nystatin-loaded liposomes against Candida albicans.