Nonlinear Spiking Neural Systems for thermal Image Semantic Segmentation Networks.

Int J Neural Syst

School of Computer and Software Engineering, Xihua University, Chengdu 610039, P. R. China.

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Thermal and RGB images exhibit significant differences in information representation, especially in low-light or nighttime environments. Thermal images provide temperature information, complementing the RGB images by restoring details and contextual information. However, the spatial discrepancy between different modalities in RGB-Thermal (RGB-T) semantic segmentation tasks complicates the process of multimodal feature fusion, leading to a loss of spatial contextual information and limited model performance. This paper proposes a channel-space fusion nonlinear spiking neural P system model network (CSPM-SNPNet) to address these challenges. This paper designs a novel color-thermal image fusion module to effectively integrate features from both modalities. During decoding, a nonlinear spiking neural P system is introduced to enhance multi-channel information extraction through the convolution of spiking neural P systems (ConvSNP) operations, fully restoring features learned in the encoder. Experimental results on public datasets MFNet and PST900 demonstrate that CSPM-SNPNet significantly improves segmentation performance. Compared with the existing methods, CSPM-SNPNet achieves a 0.5% improvement in mIOU on MFNet and 1.8% on PST900, showcasing its effectiveness in complex scenes.

Download full-text PDF

Source
http://dx.doi.org/10.1142/S0129065725500388DOI Listing

Publication Analysis

Top Keywords

spiking neural
16
nonlinear spiking
12
neural systems
8
semantic segmentation
8
rgb images
8
neural system
8
neural
4
systems thermal
4
thermal image
4
image semantic
4

Similar Publications

Transcranial alternating current stimulation (tACS) enables non-invasive modulation of brain activity, holding promise for cognitive research and clinical applications. However, it remains unclear how the spiking activity of cortical neurons is modulated by specific electric field (E-field) distributions. Here, we use a multi-scale computational framework that integrates an anatomically accurate head model with morphologically realistic neuron models to simulate the responses of layer 5 pyramidal cells (L5 PCs) to the E-fields generated by conventional M1-SO tACS.

View Article and Find Full Text PDF

The integration of information memory and computing enabled by nonvolatile memristive device has been widely acknowledged as a critical solution to circumvent the von Neumann architecture limitations. Herein, the Au/NiO/CaBiTiO/FTO (CBTi/NiO) heterojunction based memristor with varying film thicknesses are demonstrated on FTO/glass substrates, and the CBTi/NiO-4 sample shows the optimal memristor characteristics with 5 × 10 stable switching cycles and 10-s resistance state retention. The electrical conduction in the low-resistance state is dominated by Ohmic behavior, while the high-resistance state exhibited characteristics consistent with the space-charge-limited conduction (SCLC) model.

View Article and Find Full Text PDF

Complexity of brain-like signals in self-organised nanoscale networks.

Neural Netw

August 2025

The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury, Christchurch, 8140, New Zealand. Electronic address:

The biological brain is comprised of a complex, interconnected, self-assembled network of neurons and synapses. This network enables efficient and accurate information processing, unsurpassed by any other known computational system. Percolating networks of nanoparticles (PNNs) are complex, interconnected, self-assembled systems that exhibit many emergent brain-like characteristics.

View Article and Find Full Text PDF

ChroMOS: a "microwire-like" CMOS neural probe for chronic neural recordings in mice.

Biosens Bioelectron

September 2025

Microtechnology for Neuroelectronics Unit (NetS(3) lab), Fondazione Istituto Italiano di Tecnologia, Genova, Italy.

Achieving stable and continuous monitoring of signals of numerous single neurons in the brain faces the conflicting challenge of increasing the microelectrode count while minimizing cross-sectional shank dimensions to reduce tissue damage, foreign-body-reaction and maintain signal quality. Passive probes need to route each microelectrode individually to external electronics, thus increasing shank size and tissue-damage as the number of electrodes grows. Active complementary metal-oxide-semiconductor (CMOS) probes overcome the limitation in electrode count and density with on-probe frontend, addressing and multiplexing circuits, but current probes have relatively large shank widths of 70 - 100 μm.

View Article and Find Full Text PDF

Biological nervous systems constitute important sources of inspiration towards computers that are faster, cheaper, and more energy efficient. Neuromorphic disciplines view the brain as a coevolved system, simultaneously optimizing the hardware and the algorithms running on it. There are clear efficiency gains when bringing the computations into a physical substrate, but we presently lack theories to guide efficient implementations.

View Article and Find Full Text PDF