98%
921
2 minutes
20
Background: An unmet clinical need requires the discovery of new treatments for men facing advanced prostate cancer. Aberrant glycosylation is a universal feature of cancer cells and plays a key role in tumour growth, immune evasion and metastasis. Alterations in tumour glycosylation are closely associated with prostate cancer progression, making glycans promising therapeutic targets. Fucosyltransferase 8 (FUT8) drives core fucosylation by adding α1,6-fucose to the innermost GlcNAc residue on N-glycans. While FUT8 is recognised as a crucial factor in cancer progression, its role in prostate cancer remains poorly understood.
Methods & Results: Here, we demonstrate using multiple independent clinical cohorts that FUT8 is upregulated in high grade and metastatic prostate tumours, and in the blood of prostate cancer patients with aggressive disease. Using novel tools, including PhosL lectin immunofluorescence and N-glycan MALDI mass spectrometry imaging (MALDI-MSI), we find FUT8 underpins the biosynthesis of malignant core fucosylated N-glycans in prostate cancer cells and using both in vitro and in vivo models, we find FUT8 promotes prostate tumour growth, cell motility and invasion. Mechanistically we show FUT8 regulates the expression of genes and signalling pathways linked to prostate cancer progression. Furthermore, we find that fucosylation inhibitors can inhibit the activity of FUT8 in prostate cancer to suppress the growth of prostate tumours.
Conclusions: Our study cements FUT8-mediated core fucosylation as an important driver of prostate cancer progression and suggests targeting FUT8 activity for prostate cancer therapy as an exciting area to explore.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12086987 | PMC |
http://dx.doi.org/10.1002/cam4.70959 | DOI Listing |
JCO Clin Cancer Inform
September 2025
USC Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA.
Purpose: To evaluate a generative artificial intelligence (GAI) framework for creating readable lay abstracts and summaries (LASs) of urologic oncology research, while maintaining accuracy, completeness, and clarity, for the purpose of assessing their comprehension and perception among patients and caregivers.
Methods: Forty original abstracts (OAs) on prostate, bladder, kidney, and testis cancers from leading journals were selected. LASs were generated using a free GAI tool, with three versions per abstract for consistency.
JCO Precis Oncol
September 2025
Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA.
Clin Nucl Med
September 2025
Department of Radiology and Nuclear Medicine, Comprehensive Cancer Care and Research Center (SQCCCRC), University Medical City, Muscat, Oman.
PSMA-targeted radioligand therapies with 177Lu-PSMA-617 have shown promising response rates with favorable toxicity in patients with metastasized castration-resistant prostate cancer. We report a case of a 72-year-old man with metastatic castration-resistant prostate cancer having comorbidities of DM, HTN, and end-stage renal disease (ESRD) on regular hemodialysis. The patient received 2 doses of 7.
View Article and Find Full Text PDFJ Med Chem
September 2025
State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
Resistance-conferring mutations in the androgen receptor (AR) ligand-binding pocket (LBP) compromise the effectiveness of clinically approved orthosteric AR antagonists. Targeting the dimerization interface pocket (DIP) of AR presents a promising therapeutic approach. In this study, we report the design and optimization of -(thiazol-2-yl) furanamide derivatives as novel AR DIP antagonists, among which was the most promising candidate.
View Article and Find Full Text PDFJAMA
September 2025
Division of Surgery and Interventional Science, UCL, London, United Kingdom.
Importance: Multiparametric magnetic resonance imaging (MRI), with or without prostate biopsy, has become the standard of care for diagnosing clinically significant prostate cancer. Resource capacity limits widespread adoption. Biparametric MRI, which omits the gadolinium contrast sequence, is a shorter and cheaper alternative offering time-saving capacity gains for health systems globally.
View Article and Find Full Text PDF